基于RBF神經網絡的永磁同步電機匝間短路故障診斷方法

打開文本圖片集
中圖分類號:TP277 文獻標志碼:A 文章編號:2095-2945(2025)14-0026-0
Abstract:Inter-tumshort circuitfaultsareoneof themostcommonandserious faultsthatoccrinpermanent magnet synchronousmotors (PMSM).Motorfaultdiagnosistechnologyisanimportantmeanstoimprovemotorreliabityandreducefault loses.Therefore,thispaperproposesamethodbasedonRBFneuralnetworktodiagnoseinter-turnshortcircuitfaultsin permanentmagnetsynchronousmotors.First,afiteelementmodelof inter-turnshortcircuitfaultof permanentmagnet synchronousmotorisestablished.Themotorwindingisdividedintomultiplesub-windings,andthetwoendsofthesubwindingsareconectedinparaleltosimulateinter-turnshortcircuitfaults.Secondly,theestablishedfiniteelementmodelis usedtosimulatethemotorperfomanceunderdiferentfaultdegres.Thepaperanalyzesandextractsfaultcharacteristicsfrom motortorque,phasevoltage,andphasecurent.Finally,afaultdiagnosissystem isestablishedusingRBFneuralnetwork.Ithas benverifiedthat theproposed faultdiagnosis methodcan diagnose diffrent degreesof inter-turn short circuits.
Keywords:permanentmagnetsynchronousmotor;inter-tunshortcircuitfault;faultdegree;faultfeatureextraction;RBF neural network
永磁同步電機(PMSM)具有結構簡單、體積小、重量輕和可靠性高等優(yōu)點-2,被廣泛應用于電動汽車、風力發(fā)電等領域[3-4。(剩余9267字)