基于機器學(xué)習(xí)的人工耳蝸植入術(shù)后兒童聽覺言語康復(fù)效果預(yù)測模型研究(附講解視頻

打開文本圖片集
中圖分類號 R764.5 文獻標識碼 A 文章編號 2096-7721(2025)04-0655-06
Prediction model based on machine learning for auditory and speech rehabilitation outcomes in children after cochlear implantation (with explanatory video)
BAI Jie,LI Ying, JIN Xin, YAN Meiling, LIU Haihong (DepartmentofOtolaryngogHeadandNeckSurgeryeingCdren’sHospital,CapitalMdicalUiversitNatioalCtefr Children'sHealth,Beijing10oo45,China)
AbstractObjective:To exploretheaplicationof machine learming techniques inpredictingauditoryand speech rehabilitation outcomesforchildrenaftercochlearimplantation.Methods:187childrenwhounderwentcochlearimplantationatBeijingChildren’s HospitalAfiliatedtoCapitalMedicalUniversityfromJanuaryO12toOctober2O24wereselectedDatafromheparents’evaluation ofauraloralpforaeofdenuestoirendcalincatosrecoltedatvicectiatiod1,,6d 36 monthsafteractivation.Machinelearningalgorithms (Support VectorMachine,RandomForest,andArtificialNeuralNetwork) wereused toconstructpredictionmodels,withfeatureselectionmethodsidentifyingkeyfactors influencingrehablitationoutcomes. Results:Theacuracyof predictionmodelsconstructedbyArtificialNeuralNetwork,RandomForest,and Support VectorMachine were 7 4 . 9 1 % 7 1 . 0 2 % ,and 6 8 . 2 0 % ,respectively.Feature selection revealed 7 significant predictors ( P <0.05): usage time of CI, age at activation,ucaalveofayiidclaontlaalitydiid Conclusion:Machinelearing techniquescanefectivelypredictauditoryandspeechrehabilitationoutcomesinchildrenaftercochlear implantationhichprovidesanoveltolandtheoreticalsupportforpreciseclincalassessmentandpersonalzedinteetio. KeyWords Cochlear Implant; Machine Learning;Aural and Oral Performance; Children
世界衛(wèi)生組織在《世界聽力報告》中指出,全球超過15億人存在一定程度的聽力損失,其中至少4.3億人需要專業(yè)的聽力康復(fù)進行干預(yù)。(剩余8311字)