特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于RFECV特征選擇和隨機森林預測模型的應用與優(yōu)化

  • 打印
  • 收藏
收藏成功


打開文本圖片集

摘要:該文基于隨機森林預測模型,提出RFECV特征選擇方法:首先對特征變量進行獨熱編碼,再利用RFECV內(nèi)置的交叉驗證評估各特征子集性能,以確定最佳特征數(shù)量,并遞歸消除低重要性特征。實驗表明,該方法在隨機森林上訓練與預測更快,均方誤差更低,特征提取準確率高。

關鍵詞:隨機森林預測模型;獨熱編碼;遞歸特征消除;交叉驗證

doi:10.3969/J.ISSN.1672-7274.2024.09.039

中圖分類號:TP 391                 文獻標志碼:B            文章編碼:1672-7274(2024)09-0-03

Feature Selection Based on RFECV and Application and Optimization of Random Forest Prediction Model

SUN Jing

(School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030000, China)

Abstract: Based on the random forest prediction model, this paper proposes the RFECV feature selection method: firstly, the feature variables are encoded with one-hot encoding, and then the built-in cross-validation of RFECV is used to evaluate the performance of each feature subset to determine the optimal number of features, and recursively eliminate low-importance features. Experiments show that this method achieves faster training and prediction on the random forest, lower mean squared error, and high accuracy in feature extraction.

Keywords: random forest prediction model; one-hot encoding; recursive feature elimination; cross-validation

0   引言

在數(shù)據(jù)量高速增長的今天,與數(shù)據(jù)對象相關的其他特征數(shù)據(jù)越來越多,在分析的過程中,不可避免要對這些特征數(shù)據(jù)的影響力進行計算并判斷,從而更好地理解數(shù)據(jù)對象,服務于后續(xù)流程。(剩余4688字)

目錄
monitor