50</sub> )分別達(dá)到 98.9% 和 89.6% ,較原始 Υ<sub>OLOv8n</sub> 模型分別提升了6.1個(gè)百分點(diǎn)和2.4個(gè)百分點(diǎn)。本研究提出的YOLOv8_MMW模型在復(fù)雜農(nóng)田環(huán)境下表現(xiàn)出更強(qiáng)的魯棒性,能夠有效提升對(duì)無(wú)人機(jī)拍攝的玉米幼苗圖像的檢測(cè)準(zhǔn)確率,為農(nóng)業(yè)管理和監(jiān)測(cè)提供了技術(shù)支持。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)YOLOv8的無(wú)人機(jī)圖像玉米幼苗檢測(cè)

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):S513 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1000-4440(2025)06-1179-09

Abstract:Unmannedaerial vehicletechnology,withits higheficiencyandprecision,hasbeen playingan importantrole intheagricultural fieldandhasben widelyappedinfarmlandmonitoring,precisionfertilization,andpestanddiseasecontrol. However,inthecomsedingimagescolectedbyunmannederialvehicle,weedsndotherinterferentsinthefieldhavecolors similar tocomseedlings,whichcaneasilylead tofalsedetectionand mised detectionintheYOLOv8 model.Additionally,the occlusionbetweencornsedlingscanalsoafectthedetectionaccuracyof the model.Inresponsetotheseproblems,this study proposed the YOLOv8+MultiSEAM + MetaNeXtStag + WIoU(YOLOv8-MMW)model. Based on the YOLOv8 model architecture, this modelfirstintroducedthe MultiSEAMatentionmechanismintothenecknetwork,whichefectivelyenhancedthemodel's featureextractionabilityincomplexscenes.SecondlyitincorporatedtheMetaNeXtStagemodulefromInceptionNeXt.Onhisbasis,theWise-IoUlossfunctionwasadoptedtoimprovemodelaccuracy.Theexperimentalresultsonthetestsetshowedthatthe accuracy and the mean average precision at an intersection-over-union threshold of O.50( mAP50 )ofthe YOLOv8-MMW model

reach 98.9% and 89.6% ,respectively,which were 6.1 percentage points and 2.4 percentage points higher than those ofthe original YOLOv8n model.The YOLOv8-MMW model proposed in this study demonstrates stronger robustnessin complex farmland environmentsand can effectively improve the detection accuracy of corn seedling images captured by inmanned aerial vehicle,and can provide technical support for agricultural management and monitoring

Key words:corn seedling;unmanned aerial vehicle;YOLOv8;MultiSEAM;MetaNeXtStage;lossfunctior

玉米是中國(guó)種植面積1和產(chǎn)量均居首位的作物2,也是重要的經(jīng)濟(jì)作物,對(duì)國(guó)家糧食安全具有重大戰(zhàn)略意義[3]。(剩余12959字)

monitor