2</sup> ,優(yōu)于GB/T1541—2013《紙和紙板塵埃度的測定》要求,分類準確度達 95.89% ,能夠實現(xiàn)多類紙品的全量程測量,單樣本重復性測量誤差為0,相比人工檢測系統(tǒng)單樣本檢測用時縮短了約 97% ,實現(xiàn)了紙類產品塵埃度的高效、精準檢測。-龍源期刊網" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于卷積神經網絡與機器視覺的紙張塵埃度測量系統(tǒng)的設計與應用研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

作者簡介:李歡,工程師;研究方向:人工智能與機器視覺在檢測設備研發(fā)中的應用、設備精度與自動化水平的提升。

關鍵詞:紙張塵埃度;卷積神經網絡(CNN);機器視覺;圖像處理中圖分類號:TS77;TP391.41 文獻標識碼:A DOI: 10.11980/j.issn.0254-508X.2025.08.020

Designand Research of Paper Dirt Determination System Based on Convolutional Neural Network andMachineVision

LI Huan*LI Liang (Wuhan Product Quality Testing Institute Co.,Ltd.,Wuhan,Hubei Province,430048) (*E-mail:lihuanWHQT@163.com)

Abstract:Thisstudydesigedapaperdirtdeterinationsystembasedonconvolutionalneuralnetwork (CN)andmachinevisionThesystemwasconstructedwithtwomodules,modeltrainingandtesting.Highresolutionsannerswereusedtoobtaindirtdatasetsandiagesf papersamples.Dieretoptimzatioalgors wereapldtotainteclasificatiomodel,andadagonalmeasurntalgorwas adopted.Asandarddirtpieltableasceaedfgradgandlasifatiosatists,erbycalulatingthdirthsultssodat the precision of the system could reach 0.007mm2 ,which was better than the requirement specified in GB/T 1541—2O13“Paper and board—Determination of dirt".The classification precision reached 95. 89 % ,enabling full-range determination of various paper products.The repeatabilitydetermiationerorofasinglesapleasO.Compadwitmaualdetetiontesingesapledetectiontestigtieofteste was reduced by about 97% ,realizing efficient and accurate detection of dirt in paper products.

ey words: paper dirt;convolutional neural network (CNN);machine vision;image processin{

紙張塵埃度是判定紙張外觀質量的關鍵指標之一,及時將紙張塵埃度的檢驗結果反饋給生產企業(yè)人員,有助于追溯生產環(huán)節(jié),改善工藝流程。(剩余8826字)

目錄
monitor