基于卷積神經網絡與機器視覺的紙張塵埃度測量系統(tǒng)的設計與應用研究

打開文本圖片集
作者簡介:李歡,工程師;研究方向:人工智能與機器視覺在檢測設備研發(fā)中的應用、設備精度與自動化水平的提升。
關鍵詞:紙張塵埃度;卷積神經網絡(CNN);機器視覺;圖像處理中圖分類號:TS77;TP391.41 文獻標識碼:A DOI: 10.11980/j.issn.0254-508X.2025.08.020
Designand Research of Paper Dirt Determination System Based on Convolutional Neural Network andMachineVision
LI Huan*LI Liang (Wuhan Product Quality Testing Institute Co.,Ltd.,Wuhan,Hubei Province,430048) (*E-mail:lihuanWHQT@163.com)
Abstract:Thisstudydesigedapaperdirtdeterinationsystembasedonconvolutionalneuralnetwork (CN)andmachinevisionThesystemwasconstructedwithtwomodules,modeltrainingandtesting.Highresolutionsannerswereusedtoobtaindirtdatasetsandiagesf papersamples.Dieretoptimzatioalgors wereapldtotainteclasificatiomodel,andadagonalmeasurntalgorwas adopted.Asandarddirtpieltableasceaedfgradgandlasifatiosatists,erbycalulatingthdirthsultssodat the precision of the system could reach 0.007mm2 ,which was better than the requirement specified in GB/T 1541—2O13“Paper and board—Determination of dirt".The classification precision reached 95. 89 % ,enabling full-range determination of various paper products.The repeatabilitydetermiationerorofasinglesapleasO.Compadwitmaualdetetiontesingesapledetectiontestigtieofteste was reduced by about 97% ,realizing efficient and accurate detection of dirt in paper products.
ey words: paper dirt;convolutional neural network (CNN);machine vision;image processin{
紙張塵埃度是判定紙張外觀質量的關鍵指標之一,及時將紙張塵埃度的檢驗結果反饋給生產企業(yè)人員,有助于追溯生產環(huán)節(jié),改善工藝流程。(剩余8826字)