基于細頸結構的密集小目標車輛檢測研究
——以LSGC-YOLOv8為例

打開文本圖片集
中圖分類號:TP391.4;TP181 文獻標識碼:A 文章編號:2096-4706(2025)11-0114-08
Research on Dense Small Target Vehicle Detection Based on Thin Neck Structure -Taking LSGC-YOLOv8 as an Example
ZHOU Zijian, LIU Haizhong (School ofMathematicsand Physics,Lanzhou Jiaotong University,Lanzhou 73oo70,China)
Abstract:The traditional monitoring systemrelieson manual identification of targets,which is inefficient and easy to misjudge.This paper improves and researches the series of YOLOalgorithms.Although theYOLO algorithm has been widely usedinmanyfelds,itsillfacestheechallengesinactualtraffcscenarios.Weatherchangesandhardwarelimitationscaeasily leadtoadeclieindataqualityThedetectionabilityofnarrowareatarget,occlusiontargetandincompletetargetisinsuient. Inadition,inomplexesdetaileatureetractionaslitatios.Tothisd,tispperproposanimproedodetat integrates lightweight designandstructuraloptimization.The model contains threeinnovations.Firstly,the backbone network introducesalightweightarchitecture,whichsignificantlyreduces thecomputationalcomplexityunderthepremiseofcontolable accuracylossSecondlythedetectionheadisreconstructedbyVoVGSCSPmodule tonhancetheabilityoffe-grainedfeature capture.ThirdlytheintegratedAtentionMechanismimproves thequalityoffeaturefusion.Theexperimentalresultsshowthat theimprovedmodelachievesthebalanceoptimizationofaccuracyandefciencyincomplextraffcscenarios,ndhasapication value.
Keywords:TargetDetection;intelligenttransportation; image recognition;DeepLearning;vehicledetection
0 引言
隨著機動車的增加,實時反饋交通流量和監(jiān)測追蹤流動車輛在城市智慧交通系統(tǒng)中發(fā)揮著愈發(fā)重要的作用[1。(剩余10830字)