基于深度學(xué)習(xí)的櫻桃圖像分類檢測

打開文本圖片集
中圖分類號:TP391.4 文獻(xiàn)標(biāo)識碼:A文章編號:2096-4706(2025)11-0064-06
Cherry Image Classification Detection Based on Deep Learning
LIU Qing, WU Zhongxiao, ZHANG Yaya, HE Bingwei, WEI Kaibin, ZHAO Limin, ZHAO Yuxiang (SchoolofElectronic InformationandElectricalEngineering,TianshuiNormal University,Tianshui741o,China)
Abstract:Inorderto detect cherry images in multiple types of fruit images and laythe foundation for theclasification detectionofsubsequentcherryimage high-qualityfruitsanddefective fruits,this paperproposesmodelanalysis,parameter optimization,trainingandtestingofeightcommonlyusedDepNeuralNetworks,andevaluatesthemodels byusingobjective evaluationcriteriaandthenusestheoptimalmodeltotraitheimageclassificationofcherryhighqualityanddefectivefruits. Through detection experiments,it is verified that the T2T_ViTmodel achieves average accuracies of 99.40% and 99.12% for high-qualityand defective fruitsofcherry images,espectively.There are good clasificationdetectionresultsofcherry images withhigh-qualityand defective fruits.
Keywords:DeepLearning;cherry image classification detection;T2T_ViTmodel; objectiveevaluation
0 引言
在農(nóng)業(yè)智能化領(lǐng)域,果實檢測是一個重要研究熱點。(剩余10361字)