特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于ShuffleAttention相似目標檢測

——以 SA-YOLOv7為例

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP391.4;TP183 文獻標識碼:A 文章編號:2096-4706(2025)11-0106-08

Similar Object Detection Based on Shuffle Attention

-Taking SA-YOLOv7 asan Example

REN Yuzhen1,F(xiàn)AN Zhongkui1,F(xiàn)ENG Zhenying2,ZHU Mei1 (1.SchoolofSoftwareEnginering,JangxiUniversityofScienceandTechnology,Nanchang33013,China;2.Guangdong Nikola Energy Technology Co.,Ltd., Guangzhou 51070o, China)

Abstract: YOLOv7achieves excellent results in object detection,but there is stilla problemofhigh false detectionrate insimilarobjectdetection.ThemainreasonisthatYOLOv7hasinsuffcientabilitytoextractfine-rainedfeatures.Tosolvethe above problems,thisstudyproposesaSA-YOLOv7bectdetectionnetwork.Specificallywithoutchangingtheoverallstructure ofELAN,theatentionmoduleSAismergedwithittofoaSA-ELANmoduletoobtainmorechannelandspatialfeature information,therebyimprovingthedetectionaccuracyofsimilarobjects.The modelconductsalargenumberofcomparative experiments onpublichandand glovesimilarobjectdatasets,explores theinfluenceof thenumberand positionofSAadedto theYOLOv7 network ontheresults.Italsoreveals the underlying principleofSA'srole and deepens the understandingof the Attention Mechanism.The experimental results show that the detection accuracy of SA-YOLOv7 is 7.7% higher than that of YOLOv7, and its mAP@0.5:0.95 is 1.8% higher than that of YOLOv7. Compared with the latest YOLOvl1, it also has a 0.9% (2 detection accuracy advantage.TheresearchonSA-YOLOv7 provides assistance for thedevelopmentofsimilar objectdetection technology.

Keywords: Deep Learning; YOLOv7; Shufle Attention; similar Object Detection

0 引言

隨著深度學習的發(fā)展,機器視覺取得了長足進步,目標檢測作為機器視覺的重要研究方向,涌現(xiàn)出眾多優(yōu)秀算法[,它們在ImageNet、COCO、CIFAR-100等知名數(shù)據(jù)集上取得了優(yōu)異的檢測結果。(剩余12853字)

目錄
monitor