埃爾米特矩陣空間立方冪等保持問題

打開文本圖片集
摘 要:保持問題是在一個(gè)給定的數(shù)學(xué)結(jié)構(gòu)上研究保持某種不變量的映射的問題。針對(duì)埃爾米特矩陣空間保立方冪等的問題,通過刻畫在保立方冪等的實(shí)線性映射下,研究了2×2維埃爾米特矩陣空間的基底到m×m維埃爾米特矩陣空間上的像,給出了從低維到高維埃爾米特矩陣空間保持立方冪等的實(shí)線性映射的表示形式。
關(guān)鍵詞:保持問題;不變量;埃爾米特矩陣;立方冪等;線性映射
DOI:10.15938/j.jhust.2024.05.014
中圖分類號(hào): O110.21
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2024)05-0121-11
Cubic Idempotence Preserver Problem in Hermitian Matrix Space
ZHANG Haoran, XU Jinli
(School of Science, Northeast Forestry University, Harbin 150080, China)
Abstract:Preserver problems are the study of preserving maps of certain invariants on a given mathematical structure. In order to preserve the cubic idempotent of Hermitian matrix space, we study the image from the basis of 2×2-dimensional Hermitian matrix space to m×m-dimensional Hermitian matrix space, and give the representation of the real linear mapping from low-dimensional to high-dimensional Hermitian matrix space.
Keywords:preserver problems; invariants; Hermitian matrix; cubic idempotent; linear mapping
0 引 言
保立方冪等問題屬于線性保持問題。(剩余17474字)