崇陽(yáng)溪流域PRBP神經(jīng)網(wǎng)絡(luò)洪水預(yù)報(bào)模型研究

打開(kāi)文本圖片集
SI Qi', JIN Baoming1*,LU Wangming2, CHEN Zhaoqingl (1.ColegeofCiviEineinguzouUvesityuzo8,Ca;2.aningFlooddroughtisastereveiote Nanping , China)
Abstract:ThePoak-Ribiereconjugategradientbackpropagationalgorithm(PRBP)ofnumericaloptimizationtechnologywasused, and21rainstormandfloodprocessesfrom1997to2O2 intheupperreachesofChongyangRiverbasinwerestudied.Therainfal volumeofsixrainfalltationsintheupperreachesofChongyangRiverbasinandthepreviousdischargeof Wuyishan Hydrological Stationwereregardedasinput,anditscorespondingdischargewasregardedasoutput;thenumberofhiddenlayerunitswas determinedbytrialcalculation,andthenPRBPneuralnetworkfloodforecastingmodelofChongyangxiRiver Basinwasestablished. Theremainingeightfloodswereusedtotestandvalidatethemodel.TheresultsshowthatcomparedwiththatoftheconventionalBP neuralnetworkodel,tonergencespdofeodelissterndthalculationspeedisviouslyiproed;thteistic coefficient of the model is greater than O.87,and the relative error of peak flowof six floods is within 10% . The forecasting accuracy meets the requirements,which can provide a basis forthe flood control department to forecast the flood.
Keywords:PR conjugate gradient method; BP neural network; flood forecasting; Chongyang River Basin
山區(qū)流域洪水往往具有破壞性強(qiáng)、預(yù)見(jiàn)期短、預(yù)報(bào)難度大的特點(diǎn)。(剩余8880字)