基于支持向量機(jī)回歸的黃土濕陷性預(yù)測(cè)研究

打開(kāi)文本圖片集
關(guān)鍵詞:黃土濕陷性;物性指標(biāo);相關(guān)性;支持向量機(jī);預(yù)測(cè)模型
中圖分類(lèi)號(hào):TU444 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1005-8249(2025)03-0073-05
DOI:10.19860/j.cnki.issn1005-8249.2025.03.014
Abstract:Toadressthechallenges inrapidandacurate predictionof loess collapsibilityin Central Gansuusingconventional methods,asupportvectormachineregression-based predictive modelwas developed.Leveragingdata fromarailwayprojectin thisregion,soil samplescollctedfrom manuall excavated testpitsunderwentcomprehensivelaboratorygeotechnicaltestingto obtainkey physical propertyidices.Correlations between losscollpsecoeffcientsandphysicalindicesweresystematicaly investigated through literatureanalysisandmathematical statistics.AGaussankemelfunction-basedSVMpredictionmodel wassubsequentlyestablished.The modelwastrainedwith45experimentaldatasets,while15datasetswereutilized forvalidationand eroranalysis.Resultsdemonstratethatthe modelachievesameanabsoluteeror(MAE)ofO.OO3,meanbias eror(MBE)ofO.Ol,androt meansquare error(RMSE)of O.O159onthetraining set.Forthetesting set,performance metrics indicate MAE=0.0132 , MBE=0.0018 ,and RMSE=0.015 .These findings confirm the model’s high predictive accuracyfortimatinglosscollapsecoefcientsinCentralGansu,providingareliableovelmethodologyforpracticalegining applications.
Key words:loess colapsibility;physical property index;correlation;support vector machine;prediction model
0 引言
濕陷性土壤在受到地下水或降雨作用后,會(huì)出現(xiàn)顯著的變形,這對(duì)基礎(chǔ)設(shè)施、房屋及其他工程建設(shè)構(gòu)成潛在威脅[1]。(剩余4952字)