考慮噪聲和初始狀態(tài)不確定性的車輛狀態(tài)UKF估計(jì)

打開文本圖片集
中圖分類號(hào):U461.6 文獻(xiàn)標(biāo)識(shí)碼:A DOI: 10.3969/j.issn.1674-8484.2025.03.007
Abstract:An improved unscented Kalman filter (UKF) vehicle state estimation method was proposed to improve the estimationaccuracyof vehicle states in thepresence of noise covariance matrixand initial state uncertainties.This method introduced a windowing process based on the maximum a posteriori (MAP) estimationstrategy toachievedynamicestimationof thenoisecovariancematrix,whilealsointegratingastatic particlefiter(SPF)algorithm toestimate the initial vehiclestates.The improved UKF'sestimationaccuracy was verified usingaco-simulationplatformwith CarSimand MATLAB/Simulink.Theresults show that,when measurement noise deviates from the truevalue,the windowed MAPdynamic estimation method for the noisecovariance matrix improves the estimationaccuracy of longitudinal and lateral speeds by 90% and 80% respectively,compared to thestandard UKF.Incomparison to the UKFwithadaptive noise covariance matrix adjustment, the estimation accuracy increases by 75% and 56% ,respectively. Under initial state uncertainty, the SPF method improves the estimation accuracy of longitudinal and lateral vehicle speeds by 94% and 90% respectively.Therefore,the proposed improved UKF estimation method significantly enhances estimation accuracyand robustness in the presence of noise covariance matrixand initial state uncertainties.
Keywords:electric vehicle; vehicle state estimation; unscented Kalman fiter (UKF); maximuma posteriori (MAP); static particle filter (SPF)
提升汽車主動(dòng)安全控制系統(tǒng)的性能是減少交通安全事故發(fā)生的關(guān)鍵因素,而準(zhǔn)確實(shí)時(shí)地獲取車輛狀態(tài)信息,又是主動(dòng)安全控制系統(tǒng)進(jìn)行控制決策的必要前提[。(剩余14303字)