基于云端數(shù)據(jù)充電初期片段的電池極化參數(shù)辨識(shí)
Identification of battery polarization parameters based on initial charging segment of cloud data
WANG Limei1,CUI Yanwei1,SUN Jingjing1,ZHAO Xiuliang*2,LIU Liang1, PAN Chaofeng
(1.AutomotiveEngineeringResearch Institute,Jiangsu University,Zhenjiangl2ol3,China; 2.SchoolofAutomotiveandTrafcEngineering,Jiangsu University,Zhenjiang2l2ol3,China)
Abstract:A benchmark polarization parameter identification method was proposed based on cloud data toenhance the accuracy and thespeed of online identificationof battery polarization parameters.The characteristics of battery polarization parameters were investigated by conducting charge-discharge pulse experiments.A method analogous wasemployed by utilizing the initialcharging segment from cloud data throughthe Hybrid Pulse Power Characterization (HPPC)teststoobtain the charging polarization parameters. The Variable Forgeting Factor Recursive Least Squares (VFFRLS)algorithm wasapplied with the identified charging polarization parametersas constraints to compute the discharging polarization parameters.The results indicated that thismethodyieldedbattery timeconstantsranging from 34~53s ,and the polarization parameters remained invariant with respect to the current rate under corresponding low current rates in the cloudenvironment.Thecalculated chargingpolarizationresistanceandpolarizationcapacitancealignedwel with laboratory results.The convergence speed of the proposed constrained online identification method was improvedbyatleast 6% compared with the unconstrained identification method.
Keywords:batterycharginganddischarging;polarizationparameter;clouddata;of-lineidentification;hybrid pulse power characterization (HPPC) analogy;variable forgetting factor recursive least square (VFFRLS)algorithm
電池作為電動(dòng)汽車(chē)(electricvehicles,EVs)動(dòng)力電池系統(tǒng)和儲(chǔ)能系統(tǒng)的核心組件,其性能直接影響系統(tǒng)的整體效率和可靠性。(剩余12488字)
-
-
- 汽車(chē)安全與節(jié)能學(xué)報(bào)
- 2025年02期
- 駕駛風(fēng)險(xiǎn)監(jiān)測(cè)與干預(yù)技術(shù)研究綜述...
- 汽車(chē)驅(qū)動(dòng)橋螺旋錐齒輪齒面測(cè)量誤...
- 電動(dòng)汽車(chē)側(cè)面柱撞前排雙乘員中遠(yuǎn)...
- 緊急轉(zhuǎn)向工況輪轂電機(jī)電動(dòng)汽車(chē)多...
- 基于功能性腦網(wǎng)絡(luò)和圖卷積網(wǎng)絡(luò)的...
- 云端數(shù)據(jù)驅(qū)動(dòng)的鋰電池故障無(wú)監(jiān)督...
- 搭載可變氣門(mén)機(jī)構(gòu)的柴油機(jī)二沖程...
- 基于AMESim的質(zhì)子交換膜燃...
- PEM燃料電池?fù)醢逍土鞯纼?nèi)擴(kuò)散...
- 混合動(dòng)力汽車(chē)的道路預(yù)見(jiàn)性節(jié)能技...
- 新能源汽車(chē)驅(qū)動(dòng)電機(jī)冷卻系統(tǒng)劣化...
- 基于軌跡預(yù)測(cè)模型的仿真車(chē)輛軌跡...
- 基于云端數(shù)據(jù)充電初期片段的電池...
- 智能車(chē)輛自適應(yīng)軌跡跟蹤控制方法...
- 基于改進(jìn)樣本卷積交互網(wǎng)絡(luò)的車(chē)輛...
- 基于風(fēng)險(xiǎn)敏感的自動(dòng)駕駛汽車(chē)分層...
- 基于OnSite平臺(tái)的自動(dòng)泊車(chē)...
- 《汽車(chē)安全與節(jié)能學(xué)報(bào)》撰稿要求...