云端數(shù)據(jù)驅(qū)動的鋰電池故障無監(jiān)督學習早期預(yù)警

打開文本圖片集
Unsupervised learning early warning of lithium battery failure driven by cloud data
ZHOU Zhengyi,YANG Lin*1,MENG Yizhen1,LIHuaijin1,LU Feng2,LIU Zhisheng1, LI Yang2,WUWeikun2
(1.SchoolofechanicalEngineering,hanghaiJiaoTongUniversity,o240,China; 2.ShanghaiQiyuanGreenPowerTechnologyCo.,Ltd.,20oool,China)
Abstract:An unsupervised learning early warning method was proposed based on voltage consistency to warn earlythelithiumbateryfaultsincloudbaterymanagementtechnology.Thevoltagecharacteristicsintheeffctive chargingcyclewereextracted with measuring thedegreeofvoltage consistencybyusingaminimumneighborhood radiuswhichachieved a singlecluster number for DBSCAN (density-based spatial clustering of applications with noise);Aparameterwithdimension-onewasdefined toimprove thealgorithmgeneralizationabilitytotheactual working conditions;The hyperparameterssuchasalarm thresholdswere selected through orthogonal experiment. Theactualfault cases were verifiedandanalyzed.Theresultsshowthat forthe baterysystemswith thelowstate of charge(SOC)faults,thesinglebatteryundervoltagefaults,andthesingleconsistencyfaults,thismethodenables earlywarningmore than50days inadvance,withanaccuracyrateof 96.7% ,and can locate the cells ofsubsequently developsfaults.Therefore,earlywarningof ithium-battry-systemfailures isrealized throughunsupervisedlearning.
Keywords:electricvehicle;lithium-ionbattery(LiB);batterymanagement;clouddata; unsupervised learning; fault warning;minimum neighborhood radius
鋰離子電池(lithium-ionbattery,LiB)憑借能量密度高、循環(huán)壽命長和自放電率低等優(yōu)點[是目前電動汽車電源的最佳選擇。(剩余12875字)