基于改進YOLOv5s的SAR影像鐵道檢測技術研究

打開文本圖片集
中圖分類號:TP391 文獻標志碼:A 文章編號:2095-2945(2025)13-0050-05
Abstract:Gaofen-SARsatelitesforrailroadinspectionhavetheadvantagesofwidecoverage,all-weatherandmetal sensitivity,butneedtosolvetheproblemofinstantdetectionofrlwaytargets.Forthisreasonanimprovedmodelcalled Lightweight-YOLOv5sisproposedbasedonYOLOv5s,whichisespeciallysuitablefordetectionofrailroadtargetsinSARimage. ByreducingtheMobile-Darknetbackbonefeatureextractionnetwork layers,weoptimizedthenetworkstructure;byaddingHDC andCBMmechanisms,weadjustedthesmalltargetsensoryfieldweightsandstrengthenthesmalltargetlinefacilityfeature extraction;byusing FPGMpruning,weeliminatedtheredundantfeaturemodulesandachievealightweightmodel;byusing VarifocalLossasthelossfunction,weequalizedthepositiveandnegativecategoriesandhighlightthecontributionofpositive examples.The results show that,the accuracy of Lightweight-YOLOv5s model achieves 9 7 . 6 % ,and the inference time reduces to 6.87ms.Comparedwiththeclasicalalgorithmsfordetectinglineartargetsinremotesensingimages,theperformanceisgreatly improved for instant detection of railroad targets.
Keywords: SAR; railroad inspection; rail target detection; YOLOv5s; lightweight network
鐵道線路覆蓋范圍廣、距離長,所處地區(qū)地形、地貌條件復雜多樣,尤其是氣候及地質(zhì)條件復雜的山區(qū),地震、洪水、泥石流等自然災害易發(fā),會嚴重威脅鐵路系統(tǒng)安全穩(wěn)定運行,需要即時準確地監(jiān)測鐵路所處環(huán)境情況,才能有效保障鐵路安全。(剩余5705字)