特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于深度學習的配電網(wǎng)故障智能辨識模型研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP18 文獻標志碼:A 文章編號:2095-2945(2025)13-0024-05

Abstract:With theadvancementof powersystem technologyandequipmentupgrades,theacumulationof poweroperation datahasbecomemoreandmoreregular.Duetothelimitationsoftradionalneuralnetworks,faultsamplescannotbeidetified well.Tothisnd,anintellgentidentificationmodelfordistrbutionnetworkfultsbasedoneeplaingisproposdistthe neuralnetworkarchitectureisdetermined;thenthemodelistrainedbycombiningthecorrspondingparameteroptimization algorithm;finally,thedeeplearningmodelfordistributionnetworkfaultidenificationcanbeobtained.Throughsimulation verification, the verification results prove the effectiveness of the proposed method.

Keyword:neuralnetwork;distributionnetwork;deeplearningmodel;parameteroptimizationalgorithm;inteligentfault identification

在配電網(wǎng)故障研究領域,研究內(nèi)容通常包括故障預測、故障檢測以及系統(tǒng)恢復與重構(gòu)等方面。(剩余6551字)

目錄
monitor