基于深度學習的配電網(wǎng)故障智能辨識模型研究

打開文本圖片集
中圖分類號:TP18 文獻標志碼:A 文章編號:2095-2945(2025)13-0024-05
Abstract:With theadvancementof powersystem technologyandequipmentupgrades,theacumulationof poweroperation datahasbecomemoreandmoreregular.Duetothelimitationsoftradionalneuralnetworks,faultsamplescannotbeidetified well.Tothisnd,anintellgentidentificationmodelfordistrbutionnetworkfultsbasedoneeplaingisproposdistthe neuralnetworkarchitectureisdetermined;thenthemodelistrainedbycombiningthecorrspondingparameteroptimization algorithm;finally,thedeeplearningmodelfordistributionnetworkfaultidenificationcanbeobtained.Throughsimulation verification, the verification results prove the effectiveness of the proposed method.
Keyword:neuralnetwork;distributionnetwork;deeplearningmodel;parameteroptimizationalgorithm;inteligentfault identification
在配電網(wǎng)故障研究領域,研究內(nèi)容通常包括故障預測、故障檢測以及系統(tǒng)恢復與重構(gòu)等方面。(剩余6551字)