基于ARIMA-LSTM的物流網(wǎng)絡(luò)分揀中心貨量預(yù)測模型探究

打開文本圖片集
中圖分類號:0211 文獻標(biāo)志碼:A 文章編號:2095-2945(2025)13-0046-05
Abstract:Withthevigorousdevelopmentofe-commercelogisticsnetworks,enhancinglogisticstransportationficiencyand reducinglaborcostshavebecomecoreelementsforthelogisticsindustrytostrengthenitscompetitivenessThisstudyfocuseson thecargovolumeforecastingfortransportroutesinthesortingcentersofe-commercelogisticsnetworks,aiming toacurately depictthedailyandevenhourlyfluctuationsincargovolumeoverthenext3Odaysthroughin-depthminingofhistoricalcargo volumedata.Specificall,wefirstconducted meticulouspreprocessingofdailycargovolumedatafromthepastfourmonthsand hourlycargovolumedatafromthepast3Odaysfrom57sortingcenters.Onthisbasis,weconstructedanAutoregresive IntegratedMovingAverage(ARIMA)modeltopredictthedailycargovolumeprofileoverthenext3Odays.Furthermore,we introducedaLong Short-TermMemory(LSTM)neuralnetworkmodeltoachieveprecisepredictionsof hourlycargovolumedata for the next 30 days.
Keywords: logistics network; transportation route;cargo volume profile; ARIMA model; LSTM model
現(xiàn)代物流是國民經(jīng)濟的核心,對經(jīng)濟發(fā)展至關(guān)重要,能促進市場繁榮、推動高質(zhì)量發(fā)展。(剩余4099字)