基于深度學(xué)習(xí)結(jié)合高光譜技術(shù)的大豆種子活力檢測(cè)方法

打開(kāi)文本圖片集
關(guān)鍵字:大豆;種子活力;檢測(cè);高光譜;深度學(xué)習(xí);注意力機(jī)制中圖分類(lèi)號(hào):S127 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1000-4440(2025)05-0927-10
Abstract:To achieve eficient,accurate,and non-destructive identification of soybean seed vigor,this study used seedsofthesoybeanvariety Williams 82asexperimentalmaterials.Alibraryof soybeanseeds withdiferentlevelsof vigor wasconstructedthroughartificialagingtreatments.HyperspectralimagesandRGBimagesof theseedswerethencollected to generate three image datasets (RGB dataset,SIQ dataset,and ENVIdataset).Four deep learning models (Vg16Net, GoogLeNet,MobileV3Net,and ResNet-34)were employed to detectseed vigor,and theoptimal modelsand datasets were selected.Furthermore,thecoordinate atention(CA)mechanismandlabel smothing loss function were incorporated into theoptimal models toenhancetheirdetectionperformanceandrobustnessTheresultsdemonstratedthatusingtheSIQdata
set and ResNet-34 model,the recognition accuracy reached 97.6% and 96.8% on the training set and validation set,respectively.The detection performance was superiortoothercombinationsofmodelsand datasets.The CA-ResNet-34 model,which incorporated the CA mechanismand label smoothinglossfunction into the ResNet-34 model,achieved a detection accuracy of 98.5% for soy
bean seed vigor based onthe SIQdataset.Thisrepresentedanimprovementof1.7percentage points inaccuracycompared totheoriginal ResNet-34model.Theresultsofthis studycanprovideanew methodfortheaccurate,non-destructive,and efficient detection of soybean seed vigor.
Key words: soybean;seed vigor;detection;hyperspectral;deep learning;atention mechanism
大豆是中國(guó)重要的油料作物和經(jīng)濟(jì)作物,2023年中國(guó)大豆種植面積達(dá) 1.047×107hm2 ,產(chǎn)量約2.084×107 t。(剩余14180字)