50</sub> 分別為 94.8% 、 87.3% 和 92.3% ,均高于YOLOv5、YOLOv7、YOLOv8、FasterR-CNN模型等經(jīng)典目標(biāo)檢測模型。梯度加權(quán)類激活映射(Grad-CAM)技術(shù)可視化分析結(jié)果表明,LSN-YOLOv8 模型能夠更準(zhǔn)確地聚焦于圖像中的病害區(qū)域。本研究提出的LSN-YOLOv8模型可為稻曲病監(jiān)測、病害防治和水稻抗病性鑒定提供技術(shù)支持。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)的LSN-YOLOv8模型和無人機(jī)遙感圖像的水稻稻曲病檢測方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

圖分類號(hào):S435.115 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 1000-4440(2025)05-0905-11

Abstract:Toaddress thechallenges ofcomplex backgrounds,smallesion targets,and the similaritybetween lesion targetsand backgroundfeatures inrice falsesmut imagescollcted byunmannedaerial vehicles(UAVs),we proposed the LSN-YOLOv8detection model.Themodel was basedon theYOLOv8 framework,andthe largeselective kernel network (LSKNet)was incorporated into the backbone network.Bydynamicallyadjusting thereceptive field range,the model enhanceditsabilitytoextractfeaturesofsmalltargets.Aditionally,acoordinateatention mechanism(CA)modulewas inte

grated into the backbone network to combine the spatial location information of lesionswith channel attention, thereby enhancingthe model's focusonkeyregionswhile reducing background interference.The detection process was visualized and analyzed using the gradient-weighted class activation mapping(Grad-CAM)technique,thereby

providingintuitive explanationsfor the model’sdecision-making.To verifythe model’s performance,ricefalse smut images captured by UAVsat diffrent disease stages andundervariousbackgroundconditionswereused toconstructarice false smutdataset.Thisdatasetwasutilizedfor modeltrainingand testing.Theexperimentalresultsindicatedthattheprecision, recall,and mean average precision at an intersection over union threshold of 0.50( mAP50 )of the LSN-YOLOv8 model proposed in this study were 94.8% , 87.3% ,and 92.3% ,respectively. These indices were all higher than those of classic object detection models such as YOLOv5,YOLOv7,YOLOv8 and Faster R-CNN.The visualization analysis results using Grad-CAM technology indicated thatthe LSN-YOLOv8 model wascapableof moreaccurately focusing onthediseased regions in the images.TheLSN-YOLOv8 model proposed inthis studycan provide technical supportforthemonitoring of rice false smut,disease control and prevention,and the identification of rice disease resistance.

KeyWords:ricefalsesmut;disease identification;unmannedaerial vehicle;YOLOv8model;largeselective ker-nel network(LSKNet);coordinate attention mechanism(CA)

水稻是全球最重要的糧食作物之一[1],其產(chǎn)量與質(zhì)量的提升是水稻生產(chǎn)的核心目標(biāo)。(剩余13689字)

monitor