)共6種變換,建立不同光譜變換形式下,土壤有機質(zhì)偏最小二乘回歸估算模型,分析光譜變換形式與土壤有機質(zhì)含量的相關性以及其對估算模型精度的影響。結果表明,6種變換均有與有機質(zhì)含量顯著相關的波段存在, FD-lgR 達到顯著相關性的波段數(shù)最多,為71;FD-IgR建模的決定系數(shù)R<sup>2</sup>=0.995 ,建模均方根誤差 RMSEC=0.063 ,交叉檢驗的 R<sup>2</sup>=0.775 ,預測相對偏差 RPD=2.681 ,在所有的變換中數(shù)值均較高;預測值和實測值的散點圖顯示, FD-lgR 建立的模型估算值與預測值較為接近, R<sup>2</sup>=0.872 。綜合表明,FD-lgR建立的回歸模型精度較高,穩(wěn)定性較好。研究結果為后續(xù)土壤有機質(zhì)高光譜數(shù)據(jù)預處理及估算模型構建提供參考。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

不同光譜變換形式對土壤有機質(zhì)偏最小二乘估算模型精度的影響

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號 S153.621 文獻標識碼A 文章編號 1007-7731(2025)15-0089-05

DOI號 10.16377/j.cnki.issn1007-7731.2025.15.022

Influence of different spectral transformation forms on the accuracy of partial least squares estimation model of soil organic matter

ZENG Yuanwen FAN Wenwu

(Chongqing Geomatics and Remote Sensing Center, Chongqing 401147, China)

AbstractThisstudyused field-colectedsoil samplesas test subjectsto conduct experiments including soil organicmater (SOM) content determination,hyperspectral data acquisition,and preprocessing.Sixspectral transformationswereapplied to the preprocessd spectral data:absorption depth (Depth),firstderivativeof logreflectance (FD-lgR),second derivativeof log-reflectance (SD-lgR),secondderivativeof reflectance (SD-R),second derivative ofreciprocal reflectance (SD-1/R),andsecondderivativeof reciprocallog-reflectance (SD-1/lgR).Partial least squares regression (PLSR) models for SOM estimation were establishedunder diffrent spectral transformation forms to analyze thecorrelation between spectral transformationsand SOM content,as wellas their impacton model accuracy.Theresults showed thatall6transformations exhibited bands significantlycorrelated with SOMcontent,with FD-lgRhaving the highest numberofsignificantlycorrelatedbands (71).TheFD-lgRmodelachievedadetermination coefficient ( R2 )of 0.995,a root mean square error of calibration (RMSEC) of 0.O63,a cross-validation R2 of 0.775,and a relative percent difference (RPD)of 2.681,allof which were among the highest values acrossall transformations.The scater plot of predicted versus measured values indicated that theFD-lgR model's estimates were close to the actual values,with an R2 of 0.872. Overall, the regression model based on FD-lgR demonstrated high accuracy and good stability.These findings provide a reference for subsequent hyperspectral data preprocessing and estimation model construction for soil organic matter.

Keywordssoil organic matter; hyperspectral; spectral transformation; partial least squares regression

土壤有機質(zhì)(Soilorganicmatter,SOM)是土壤的重要組成部分,其含量是評價土壤肥力的重要指標;也是農(nóng)作物生長的重要養(yǎng)分之一,對作物生長有顯著影響。(剩余5833字)

目錄
monitor