一種改進ResNet34模型的乳腺圖像識別方法

打開文本圖片集
本文引用格式:,.一種改進 ResNet34模型的乳腺圖像識別方法[J].自動化與信息工程,2025,46(3):30-36. WANG Jinjun, CAI Yanguang. An improved ResNet34 model for mammographic image recognition method[J]. Automation & Information Engineering,2025,46(3):30-36.
關(guān)鍵詞:乳腺圖像識別;ResNet34;平行注意力殘差塊;科爾莫戈洛夫-阿諾爾德網(wǎng)絡(luò)中圖分類號:TP391.41; TP183 文獻標志碼:A 文章編號:1674-2605(2025)03-0005-07DOI: 10.12475/aie.20250305 開放獲取
An Improved ResNet34 Model for Mammographic Image Recognition Method
WANG Jinjun1CAI Yanguang1,2 (l.College of Automation, Guangdong University of Technology, Guangzhou 510o06, China 2.School of Artificial Intelligence, Guangzhou Institute of Science and Technology, Guangzhou 510540, China)
Abstract: To enhance the recognition accuracy of mammographic images,an improved ResNet34 model for mammographic image recogitionmethodis proposed.BuildingupontheResNet34model,thismethod introducesaparalelatentonresidualblock (PARB)moduletostrengeniterchaeloelationsimammoapicimags,furthrextractingcricalfatureifotioto improveecogitaccacy.Aditalyiteacesterditioalultilepecetro(M)ithomogor-oldetorks (KAN) toreduce model parameters and increaserecognition speedExperimentalresults demonstratethat the improved ResNet34 model achieves enhancements of 4.0% 0.6% 8.0% ,and 4.7% in accuracy, precision, recall,and F1-Score respectively compared to the original ResNet34 model, indicating superior recognition performance for mammographic images.
Keywords: mammographic image recognition; ResNet34; paralll atentionresidualblock; Kolmogorov-Arnold networks
0 引言
乳腺癌是女性常見的惡性腫瘤之一,其發(fā)病率逐年增加[1]。(剩余7034字)