提高了 6.8% ,有效提升了算法推薦性能。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

融合情感的異構(gòu)圖神經(jīng)網(wǎng)絡(luò)音樂會話推薦算法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

本文引用格式:,.融合情感的異構(gòu)圖神經(jīng)網(wǎng)絡(luò)音樂會話推薦算法[J].自動化與信息工程,2025,46(3):9-16

LU Zhenye, DU Yuxiao. Emotion-enhanced heterogeneous graph neural network for music session-based recommendation algorithm[J]. Automation& Information Engineering,2025,46(3):9-16.

關(guān)鍵詞:會話推薦;異構(gòu)圖神經(jīng)網(wǎng)絡(luò);音樂情感;匿名用戶推薦中圖分類號:TP391.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1674-2605(2025)03-0002-08DOI: 10.12475/aie.20250302 開放獲取

Emotion-enhanced Heterogeneous Graph Neural Network for Music Session-based Recommendation Algorithm

LU Zhenye DU Yuxiao (School of Automation, Guangdong University of Technology, Guangzhou 510oo6, China)

Abstract: To addressthe limitations ofcurrent music session-based recommendation methods foranonymous or new users such a simplisticrecommendations based solelyon short-term sesions and neglect ofemotional factors influencinguserchoices this studyproposes anemotion-enhanced heterogeneous graph neuralnetwork for music sesson-basedrecommendationalgorithm. Thealgorithmconstructsasession-basedrecommendationsystemusinghistoricaldatafromallusersandcurentsessionsviagraph neural networks,integratingmusical emotional semantics toprovide more acuraterecommendationsforanonymous/nwusers. ExperimentalresultsontheNowplayingdatasetdemonstrate thatcomparedtothesuboptimal GNN-basedesionrecommedation method, the proposed algorithm achieves a 2.1% improvement in P@20 and a 6.8% increase in MRR @20 , effectively enhancing recommendation performance.

Keywords: sesion-based recommendation; heterogeneous graph neural network; music emotion; anonymous user recommendation

0 引言

信息技術(shù)的飛速發(fā)展,如5G、智能手機(jī)、云服務(wù)等,為音樂傳播帶來了前所未有的機(jī)遇。(剩余10234字)

monitor