考慮歷史退化信息融合的電池健康狀態(tài)估計研究

打開文本圖片集
主題詞:鋰離子電池 健康狀態(tài) 特征提取
中圖分類號:U46;TP18;TN303.1 文獻標志碼:A DOI:10.19620/j.cnki.1000-3703.20250111
ResearchonBatteryStateofHealth Estimationwith Historical DegradationInformation Fusion
ZhouDinghual,ZuoPeiwen2,ZhuZhongwen’,QiuXin',MaQilong1 (1.School of Automotiveand Transportation Engineering,Hefei UniversityofTechnology,Hefei23ooo9;2.China AutomotiveInformation Technology(Tianjin) Co.,Ltd., Tianjin,3O0000)
【Abstract】Inorder toaccurately estimate the State of Health (SOH)of lithium-ion bateries,this paper proposes an advanced SOHestimation methodthatintegrates Strategic Optimization Algorithm (SOA)with Memory-Enhanced Long ShortTermMemory (MELSTM)neuralnetwork.Firstly,a Variational AutoEncoder(VAE)isutilizedtoprocessrawdata,reducing redundant informationandextracting healthindicators,therebyachievingapreciserepresentationof baterydegradation information.Subsequently,ahybridmodelcombiningSOAandMELSTMisproposedtoestimateSOHoflithium-ionbatteries. Finall,effectivenessofteproposedmethodisvalidatedusing2publicdatasetsforlitium-onbateryaging,amelyACLE andNASA.Experimentalresultsdemonstratethattheproposed method improves RMSE indicators byover30%compared with conventional LSTMalgorithm,ofering new insights and solutionsforaccurateSOHestimationof ithium-ionbattery.
Keywords:Lithium-ionbattery,StateofHealth(SOH),F(xiàn)eatureextraction 【引用格式】周定華,左培文,朱仲文,等.考慮歷史退化信息融合的電池健康狀態(tài)估計研究[J].汽車技術,2025(6):28-35. ZHOUDH,ZUOPW,ZHUZW,etal.ResearchonBateryStateofHealthEstimation withHistoricalDegradation InformationFusion[J].Automobile Technology,2025(6):28-35.
1前言
鋰離子電池因具有自放電率低、循環(huán)壽命長、能量密度高、功率密度高、放電平穩(wěn)、工作溫度范圍寬、無記憶效應和環(huán)保等優(yōu)勢[-3],廣泛應用于電動汽車、大型儲能系統(tǒng)、航空等領域。(剩余11933字)