改進(jìn)YOLOv8n的塵霧環(huán)境下目標(biāo)檢測(cè)算法

打開文本圖片集
主題詞:自動(dòng)駕駛目標(biāo)檢測(cè)注意力機(jī)制多尺度特征融合塵霧環(huán)境中圖分類號(hào):U469.6;TP242.6 文獻(xiàn)標(biāo)志碼:A DOI: 10.19620/j.cnki.1000-3703.20240036
ImprovedYOLOv8n ObjectDetection AlgorithminDust andFogEnvironment
WangZiyu’,ZhangJiancheng2,LiuYuansheng2 (1.Scholof UrbanRail TransitandLogistics,Beijing Union University,Beijing1Oo101;2.Schoolof Robotics, Beijing Union University,Beijing100101)
【Abstract】To address the issues of missed detections,false detections and lowaccuracy in detecting smalland distant objects underadverse conditions such as dustand haze,this paper proposestheEPM-YOLOv8object detection algorithm.The Eficient ChannelAtention (ECA)moduleisintegratedintotheC2f moduleof theYOLOv8nalgorithm,enablingthebackbone network to focus more effectivelyonshallowandsmallrobjectfeatures.Byadding anadditional detectionlayeranddesigning a multi-dimension feature fusion architecture,the model'sability to extracttarget featuresandits detectionaccuracyare significantlyimproved.Furthermore,alossfunctionbasedontheMinimumPointDistance IntersectionoverUnion(MPDIoU) is employedtoenhance theprecisionofboundingboxregresion.ExperimentalresultsdemonstratethattheEPM-YOLOv8model achieves a precision ratio of 83.6% and a detection accuracy of 76.8% ,exhibiting superior detection performance under challenging conditions such as haze and dust.
Key Words:Autonomous driving,Object detection,Attention mechanism,Multi-scale feature fusion,Dusty and foggy environment
【引用格式】王子鈺,張建成,劉元盛.改進(jìn)YOLOv8n的塵霧環(huán)境下目標(biāo)檢測(cè)算法[J].汽車技術(shù),2025(6):1-7. WANGZY,ZHANGJC,LIUYS.ImprovedYOLOv8n Object DetectionAlgorithminDustandFog Environment[J]. Automobile Technology,2025(6): 1-7.
1前言
在塵霧環(huán)境中,圖像模糊、質(zhì)量下降導(dǎo)致有效特征提取困難,目標(biāo)檢測(cè)任務(wù)易出現(xiàn)精度降低、錯(cuò)檢和漏檢等問題。(剩余8894字)