基于卷積神經(jīng)網(wǎng)絡(luò)和殘差結(jié)構(gòu)單元的合同數(shù)據(jù)識別提取

打開文本圖片集
摘 要:為提升合同中數(shù)據(jù)項識別和提取的準(zhǔn)確率,提出一種基于卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)和殘差結(jié)構(gòu)單元(Residual Building Unit,RBU)結(jié)合優(yōu)化的CNN\|RECR(Real Estate Transaction Contract Information Detection and Recognition Method Based on Improved Convolutional Neural Network)模型,并將其應(yīng)用到不動產(chǎn)交易平臺中合同數(shù)據(jù)項的識別提取場景。(剩余8291字)