1</sub> 值達(dá)到了0.784,并證明了MDAS-Net在檢測(cè)古籍文字圖像篡改方面的實(shí)用性。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

一種古籍文字圖像篡改檢測(cè)識(shí)別模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):TP751文獻(xiàn)標(biāo)志碼:A

A Model for Detection and Recognition of Tampered Ancient Text Images

LI Yongbo 1 , QIAN Yonggang 2 , LIU Qin 1 , MA Yuqi 1 , WU Sheng 1 , YU Xianping 1 , CHEN Shanxiong ?1,3 (1.Collge of Computer and Information Science,Southwest University,Chongqing 40O715,China;2. Information Center, ChongqigVocational CollgeofIntellgntEngineeing,Chongqing 40216O,China;3.KeyLaboratoryofEthnic Language Intellgent Analysisand SecurityGovernance,MinistryofEducation,Minzu UniversityofChina,Beijing1Ooo81,China)

Abstract:Toeffectively detectandrecognize tampered textinancientdocument images,atampering detectionand recognition model named MDAS-Net,which canbe used for the character images of ancient texts,was proposed.A fuse atention block was introduced inthe edge-supervised branch to enhance multi-scale feature extraction of imagecontent. Additionally,to improve feature integration between theedge-supervised branch and the noise-sensitive branch,acrossbranch feature transfer modulenamedE-2-N/N-2-EHelp Block wasdesigned,whichfacilitatedeffectiveinformation exchangeand yields higher-qualityfused features.To verifytheefectivenessofthemodel,adatasetofancient textimage tampering was created,and comparative experimentsandablation experimentswereconducted in combination with the Text in Tampered Images (TTI)dataset.The experimental results show that MDAS-Net achieves promising performance in tampered region detection,with an area under curve of receiver operating characteristic(AUC)of O.852 and an F1 (204 score of O.784,confirming its practical value in ancient text image tampering detection.

Keywords: image processing;feature fusion;detection of tampered image;ancient text image;deep learning

在文字圖像篡改檢測(cè)和識(shí)別任務(wù)中,模型須要通過像素級(jí)別的精確定位來區(qū)分篡改圖像和真實(shí)圖像,這意味著模型不僅要識(shí)別被篡改的區(qū)域,而且要精確地定位這些區(qū)域。(剩余14253字)

monitor