基于無(wú)人機(jī)高光譜和集成學(xué)習(xí)的春小麥葉綠素含量反演
中圖分類(lèi)號(hào):S127 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1008-0864(2025)06-0093-11
Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning
HU Sile,BAO Yulong*,Tubuxinbayaer,TAO Jifeng,GUO Enliang (KeyLaboratoryofGeographicResearchontheMongolianPlateauinInnerMongoliaAwtonomousRegion,ollgeofGeogaphical Science,InnerMongoliaNormalUniversity,HohhotO1oO22,China)
Abstract:Chlorophyllcontentisakey indicator for monitoringcropgrowth,and itsrapid,effctiveandaccurate estimation is crucial for assessing crop health.Bycollecting unmanned aerial vehicle(UAV) hyperspectral images from3growth stagesand combining themwith ground-measured chlorophylldata,variousmachine learningand ensemblelearning models were employed to estimate the chlorophyll content in spring wheat,and the estimation accuracyof different modelswere compared.The results showedthat the canopyreflectance of spring wheat was generallyconsistent acrossdifferent growth stages,but significant diferences in spectralreflectance intensity were observedin the770\~9OO nmwavelength range.16spectral indices allshowed significantcorelationswithchlorophyll content,among which optimized vegetationindex1,plant biochemical indexand normalized diferencerededge indexmaintained high correlation throughout theentire growth cycle.Thepredictionaccuracyof the Stackingand Voting ensemble learning modelswas higher than thebasic models,withthe Voting ensemble model performing particularly well.In the test set,determination coefficient( R2 )values of 3 growth stages were 0.78,0.77and0.73, and root mean square error(RMSE)values were 8.70,11.36 and 16.17,respectively. Compared with random forest, support vector regression,K_nearest neighbor and ridge regression models,the R2 of the Voting model was on average0.17,0.14and0.22 higher,andtheRMSE was 4.64,2.54and6.51lower,indicating itssuperiorpredictive ability.Above results provided new perspectives and methods for precision agriculture and crop health monitoring. Key words:unmanned aerial vehicle(UAV);hyperspectral remotesensing;spring wheat;chlorophyll content; ensemble learning
葉綠素含量(leaf chlorophyll content,LCC)作為表征植物生長(zhǎng)過(guò)程的關(guān)鍵生理參數(shù),既是評(píng)價(jià)植物當(dāng)前營(yíng)養(yǎng)狀況和生長(zhǎng)發(fā)育水平的有效指標(biāo),也是衡量植物長(zhǎng)勢(shì)的指示器,LCC變化直接反映作物脅迫狀況、光合作用能力和衰老進(jìn)程的信息[2-3]。(剩余18423字)
- 聯(lián)邦學(xué)習(xí)在智慧農(nóng)業(yè)系統(tǒng)中的應(yīng)用...
- 我國(guó)作物多性化時(shí)空變化特征及影...
- 二倍體長(zhǎng)穗偃麥草HSP70基因...
- 86份谷子種質(zhì)資源萌發(fā)期抗旱性...
- 高梁苗期耐鹽性鑒定與評(píng)價(jià)...
- 外源小球藻對(duì)干旱脅迫下烤煙幼苗...
- 干旱脅迫下小??Х萐NP位點(diǎn)與...
- 塔賓曲霉的鑒定及基因編輯方法對(duì)...
- 基于無(wú)人機(jī)高光譜和集成學(xué)習(xí)的春...
- 沙地鮮食甘收獲機(jī)輸送分離裝置設(shè)...
- 融合亮度自適應(yīng)模塊的端到端低光...
- 水稻對(duì)惡苗病菌侵染響應(yīng)的蛋白質(zhì)...
- 槐米制備槲皮素及其與粘桿菌素聯(lián)...
- 薯類(lèi)淀粉晶區(qū)/非晶區(qū)結(jié)構(gòu)及熱變...
- 赤霉素處理對(duì)波爾萊特葡萄及葡萄...
- 叢枝菌根真菌對(duì)土壤碳平衡的影響...
- 典型草原礦區(qū)排土場(chǎng)邊坡不同治理...
- 生物炭-氮肥配施對(duì)東北黑土團(tuán)聚...
- 不同葉面肥對(duì)‘黑比諾'...
- 種植年限對(duì)設(shè)施葡萄園土壤鹽漬化...
- 長(zhǎng)期施肥對(duì)葡萄土壤細(xì)菌群落多樣...
- 不同水氮耦合對(duì)蛋白桑生理指標(biāo)及...