特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于ISAO-CNN-GRU的質子交換膜燃料電池壽命預測

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TM911.4 文獻標志碼:A DOI:10.20104/j.cnki.1674-6546.20240429

LifePrediction of Proton Exchange Membrane Fuel Cell Based onISAO-CNN-GRU

Xiong Jianyu1,Kuang Yazhoul,Peng Yiqiangl,2

(1.ScholofAutomobileand Transportation,Xihua University,Chengdu 610o39;2.Vehicle MeasurementControlandSafety KeyLaboratoryofSichuanProvince,Chengdu61Oo39;3.ProvincialEngineering Research CenterforNewEnergy Vehicle Intelligent Control and Simulation Test Technology of Sichuan, Chengdu 610039)

【Abstract]To predict the Remaining Useful Life(RUL)of Proton Exchange Membrane Fuel Cell (PEMFC)precisely,the paper proposes a method for predicting the RUL based onneural network optimized by Improved Snow Ablation Optimizer (ISAO).Firstlytheoriginaldataarepreprocessedbyusing Pautacriterionandwavelets,thenthePearson’scorrelation coeficients areused toselect parameters which have strong corelation with voltageas input variables.ISAOisused to optimize hyperparametersof Convolutional Neural Network-GatedRecurent Unit(CNN-GRU) model.Thenthe CNN-GRU model isusedtopredicttheoutputvoltageof the PEMFC.Testresults show that whenthetraining setratio is 30%,the mean absoluteerroris 1.6mV ,theroot mean square erroris 2.2mV ,therelativeerroris 0.41% ,and theR-squared of themethod is 99.20%,whicharethe bestresults theof six models.Compared with the Sparow Search Algorithm (SSA),Snow Ablation Optimizer (SAO)and Whale Optimization Algorithm(WOA),the ISAO hasfasteroptimization speed and beterresult,proving that the prediction model and the improved algorithm are effective.

Keywords:Proton Exchange Membrane Fuel Cell(PEMFC),Remaining Useful Life (RUL). SnowAblation Optimizer (SAO),Gauss-Cauchy mutation

【引用格式】熊健宇,匡亞洲,彭憶強.基于ISAO-CNN-GRU的質子交換膜燃料電池壽命預測[J].汽車工程師,2025(7): 36-43. XIONGJY,KUANGYZ,PENGYQ.LifePredictionof Proton Exchange MembraneFuel CellBasedon ISAOCNN-GRU[J]. Automotive Engineer, 2025(7): 36-43.

*基金項目:四川省科技廳重大科技項目(2019ZDZX0002);四川省區(qū)域創(chuàng)新合作項目(2020YFQ0037);四川省重點研發(fā)計劃項目(2021YFG0071)。(剩余11972字)

monitor