基于FCMFS特征選擇算法的煤層氣壓裂效果預(yù)測

打開文本圖片集
CoalbedMethaneFracturingEffectPredictionBased on FCMFS Feature Selection Algorithm
MIN Chao1,2,3*, GUO Xing1,2,HUA Qing4, ZHANG Na4 , ZHANG Xinhui1, 2
1.School of Science,Southwest Petroleum University,Chengdu, Sichuan 61o5oo,China 2.Institute forArtificial Intelligence,Southwest Petroleum University,Chengdu,Sichuan 61o5oo,China 3.StateKeybatoOdeoloEploatiousttroleesitygdu 4.ChongqingGas Mine,SouthwestOiland GasfieldCompany,PetroChina,Jiangbei,Chongqing 40o7oo,China
Abstract:Itisdificulttoanalyzethenonlinearrelationshipbetweenthefracturingeffectandcharacteristicsofcoalbedmethane fromthe mechanism level.Aimingat theproblem,the internalrelationship between thecharacteristicsofcoalbed methane fracturing effectisstudied,andaprediction methodofcoalbedmethane fracturingefectbasedonFCMFSfeatureselection algorithm is proposed.The methodusesfuzzycomprehensive evaluation tocalibrate thelabel,anduses genetic programming andXGBoostalgorithmtoconstructandscreenthecharacteristicsofinfluencingfactors,including twonewstructuralfeatures (stressratioandenticfactorsofgeologicalconstruction)ndsixharacterstcsofperforatiosectiontickne,peability fracturepressure,coalstructure,gassaturationandsandstrength.Theexperimentalresultsshowthatbasedontheeightfeatures constructedandscreenedbytheFCMFSfeatureselectionalgorithm,combinedwithavarietyofmachinelearningalgorithms to predictthefectofoalbedmethanefracturing,theacuracyrcallateandFlassificationevaluationindicatorsareiproed by about 5%~10% .Among them,the Deep Forest algorithm has the best prediction clasification effect on the training set and the test set,and the three classification evaluation indicators are all above 95% and 80%
Keywords:coalbed methane;fracturing performance; main controlling factor;gene programming; DeepForest model 網(wǎng)絡(luò)出版地址:http://link.cnki.net/urlid/51.1718.TE.20240927.1400.016
引言
煤層氣作為一種儲量豐富的非常規(guī)天然氣資源,在中國能源結(jié)構(gòu)的優(yōu)化調(diào)整中發(fā)揮著重要作用[1-2]。(剩余12965字)