特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于主動學(xué)習(xí)的樹狀高斯過程建模與參數(shù)優(yōu)化

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP273.2 文獻(xiàn)標(biāo)志碼:A DOI:10.12305/j.issn.1001-506X.2025.06.23

Abstract:Under the framework of treed Gaussian process(TGP)modeling,a robust parameter optimization model based on an active learning algorithm for robust parameter design problems with non-stationary responses is proposed.Firstly,bycomprehensively applying the D-optimal and Expected Improvement design strategies,anactive learningalgorithm isconstructed to improve the spatialfiling performanceand optimization performance of thedesign points. Secondly,the Bayesian hierarchical modeling approach is used to construct the model structure to estimate the non-stationary functional relationship between inputs and outputs.Finally, based on the output of the TGP model,a robust parameter optimization model is constructed based on quality loss function.The genetic algorithm(GA)is used for global optimization to obtain the optimalinput parameter setings.The simulation results show that the optimal solution obtained by the proposed method has a smaller quality lossand prediction bias.Therefore,the proposed method improves the prediction accuracy in the potential optimal solution region,reduces the uncertainty of thepredicted response,and further enhances the effectiveness of robust optimization results for non-stationary responses.

Keywords:non-stationary response;robust parameter design;treed Gaussian process (TGP) model; active learningalgorithm;quality loss

0 引言

穩(wěn)健參數(shù)設(shè)計是實現(xiàn)產(chǎn)品質(zhì)量改進(jìn)的關(guān)鍵技術(shù)之一,能夠有效提升產(chǎn)品質(zhì)量并增加經(jīng)濟(jì)效益。(剩余22056字)

目錄
monitor