基于CVAE-LSTM的服務(wù)器KPI異常檢測

打開文本圖片集
中圖分類號:TP183;TP368.5 文獻(xiàn)標(biāo)志碼:A DOI:10.12305/j.issn.1001-506X.2025.03.34
Server KPI anomaly detection based on CVAE-LSTM
SHEN Xiarunl,*,LIRuonan2,ZHANG Haotian3 (1.Beijing Institute of Aerospace Information,Beijing lO0854,China;2.Patent Examination Cooperation(Beijing)CenterofThePatentOffice,Beijinglooo7O,China; 3. Sino-German College of Applied Sciences at Tongji University,Shanhai 20l804,China)
Abstract:The anomaly detection of keyperformance indicator(KPI) is the basis of allaspects of Internet intellgent operation and maintenance,and is of great significancefor fault alarm and server security.The depth generation model has beenable to solve the problem of poor depth feature representationability of machine learning model,butitis insuficientintermsof theprocessingoftimeinformationinKPIdataand thecaptureof long-term information.For this reason,aKPIanomaly detection model basedonthecombination of conditional variational autoencoder(CVAE)and long-short term memory(LSTM) is proposed.With the powerful representation ability of CVAE network,time information isadded to deep autoencoder,and the long-term memoryability of LSTM is used to improve the long-term anomaly learning and processing abilityof the proposed model.The trained CVAE network isused to further train LSTM. Through the comparison experiment with other deep learning models on three open datasets,the experimental results show that the performance of the model in this paper is better than thatof theLSTMalone and some deep learning models with better results in terms of F1 value.
Keywords:key performance indicator(KPI)anomaly detection;conditional variational autoencoder (CVAE);long-short term memory(LSTM) network;KPI;deep learning
0 引言
聯(lián)網(wǎng)的應(yīng)用與服務(wù)已經(jīng)深入到人們?nèi)粘I钪械姆椒矫婷?,巨大的網(wǎng)絡(luò)流量也帶來一系列網(wǎng)絡(luò)安全威脅和風(fēng)險,互聯(lián)網(wǎng)公司的日常運維和服務(wù)器安全迎來了巨大的挑戰(zhàn)。(剩余17334字)