特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于融合詞向量模型的特色文獻分類

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP391.1 文獻標識碼:A 文章編號:2096-4706(2025)08-0157-05

Abstract: In library service work, when facing local characteristic literature with a smalldata volume,library managers need to spend a great deal of time and efort manually organizing such local characteristic literature.In order to achieve automatedpre-clasificatinofcharacteristicliterature,thispaperproposestheCGBmodel,whichisanutomatedclasiiation modelforliteraturewithasmalldatavolume.TakingthecharacteristicliteraturedatasetofGuizhouProvinceas theexperimental object,the model conducts pre-training through GloVeand BERT,fuses the generated vectors,extracts andrepresents features throughTextC,andlasifsharactersticitratureofferentdatasales.Experimentalsultsidicatethatteaacy of the model with fused word vectors isat least 4 % higherthanthatof thebenchmark model.

Keywords: local characteristic literature; text classification; text vectorization

0 引言

在圖書館服務工作中,為展現(xiàn)地方特色建立地方文獻庫,圖書館管理人員需要將具有地方特色的文獻從海量文獻中挑選出來,與中圖分類法不同,地方特色文獻融合了多種類型文獻,如:政治、科技、歷史、小說等,卻又與地方特色密切相關(guān),將此類文獻進行歸納整理需要耗費大量的時間與精力。(剩余6798字)

目錄
monitor