知識(shí)圖譜構(gòu)建研究綜述

打開(kāi)文本圖片集
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)08-0117-10
Abstract:As a structured semantic knowledge base,the Knowledge Graph plays a key role in many fields such as informationretrval,intellgntquestionasweringandcommendationsystems.Thisapeviews tetheecorecopoents of KnowledgeGraphconstruction,informationextraction,knowledgefusion,andknowledgerasoning.Informationetraction technologyhasdevelopedfromrule-basedmethods toMachineLearing model,andthentoDepLeaingmodel.Itiscurently evolvingtowardsajoint EntityRelationshipExtractionmodel thatreduces erorpropagationandimprovesaccuracy.Inthepart ofknowledgefusion,thestrategiesofentitylinkingandkowledge mergingarediscussed,andtheproblemofentityrecogition is solved byentitydisambiguationand entity alignment.The sectionon knowledge reasoning analyzes the reasoning methods basedonrules,epresentationlearningandDeepLeaming,anditsaplcationinnewknowledge discoveryanderorinformation corection.Finallytehallengesinteonstuctionprocessaepontedout,andsuggestiosforutureesearchditiosare proposed to promote the development of knowledge graph research and application.
Keywords: Knowledge Graph; information extraction; knowledge fusion; knowledge reasoning; Deep Learning
0 引言
20世紀(jì)90年代,計(jì)算機(jī)網(wǎng)絡(luò)在世界各地得到普及,網(wǎng)絡(luò)信息資源日漸豐富,信息數(shù)據(jù)呈現(xiàn)規(guī)模海量、類型繁多和快速增長(zhǎng)等特征。(剩余24060字)