基于TimeGAN的軌道交通LTE-M故障預(yù)測(cè)研究

打開(kāi)文本圖片集
中圖分類(lèi)號(hào):TP391 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)08-0010-06
Abstract:The Long TermEvolution of Metro (LTE-M) network fault prediction datasetof rail transit has the problems ofunbalancedsamplesandsmallamountofsampledatawhichimpacttheacuracyoffault prediction.Inordertosolvethe above problems,this paper proposes aresearch methodofLTE-Mfault predictionofrail transitbased onconditionalTime-series Generative Adversarial Networks (TimeGAN).Bydefiningdynamic autoencoderandstatic autoencoderinTimeGANmodel,this method furtherexploresthedynamicandstaticcharacteristicsofLT-Mfaultdataofrailtransit,andintroducesGELUactivation functionnthepotentialspaceofgeneratoranddiscriminatortoaceleratemodelconvergenceandgeneratesyntheticdatacloser toreal data,thusefectivelyalleviating the problemofunbalancedfaultdatasetandsmalldatavoume.Theexperimentalresults showthatwhenthedatasynthesizedbytheTimeGANmodelisusedforfaultpredictiontraining,itcanproducebeterediction results than the original data.
Keywords:rail transitLTE-M;fault prediction;time-series;TimeGAN
0 引言
隨著新一代移動(dòng)通信的飛速發(fā)展,軌道交通通信基礎(chǔ)設(shè)施規(guī)模也迅速擴(kuò)展,LTE-M網(wǎng)絡(luò)作為軌道交通網(wǎng)絡(luò)關(guān)鍵組成部分,其復(fù)雜性也隨之增加。(剩余7847字)