2</sub> 的捕集與封存(CCS)是一種潛力巨大的減排措施。多孔生物炭含有豐富的多尺度孔隙結(jié)構(gòu),具有優(yōu)異的 CO<sub>2</sub> 吸附性能。針對(duì)傳統(tǒng)基于試驗(yàn)數(shù)據(jù)建立的 CO<sub>2</sub> 吸附預(yù)測(cè)模型存在的精度低、計(jì)算復(fù)雜等不足,采用梯度提升決策樹(shù)(GBDT)、極端梯度增強(qiáng)算法(XGB)、輕型梯度增壓機(jī)算法(LGBM)等機(jī)器學(xué)習(xí)方法對(duì)生物炭吸附 CO<sub>2</sub> 進(jìn)行模型預(yù)測(cè),并對(duì)預(yù)測(cè)結(jié)果進(jìn)行對(duì)比分析。結(jié)果表明:影響 CO<sub>2</sub> 吸附量的前3個(gè)因素依次為生物炭的比表面積、C含量 <img src="/qkimages/tmjz/tmjz202503/tmjz20250324-1-l.jpg" with="15px" style="vertical-align: middle;"> 含量。3種算法均能有效預(yù)測(cè)生物炭對(duì) CO<sub>2</sub> 的吸附性能。相比之下,LGBM的預(yù)測(cè)精度最高,達(dá)到 94% ;GBDT在異常樣本數(shù)據(jù)處理方面有顯著優(yōu)勢(shì);而XGB對(duì)不同測(cè)試集變化的預(yù)測(cè)結(jié)果更加穩(wěn)定。在設(shè)計(jì)生物炭吸附性能時(shí),不應(yīng)盲目追求過(guò)高的表面積。建議生物炭C含量?jī)?yōu)先選擇 83%~88% 之間,O含量?jī)?yōu)先選擇 15%~18% 之間。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于機(jī)器學(xué)習(xí)的多孔生物炭吸附 CO2 性能預(yù)測(cè)

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

中圖分類(lèi)號(hào):TU528.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2096-6717(2025)03-0242-09

Prediction of CO2 adsorption performance in porous biochar based on machine learning

CHEN Yifei’,ZHANG Xiaoqing',TAN Kanghao12,WANG Junsong2,QIN Yinghong (1.SchoolofCivilEngineeringandArchitecture;KeyLaboratoryofDisasterPreventionandEngineeringSafetyof Guangxi, Guangxi University,Nanning 53Oo04,P.R. China; 2.State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 5lo64o,P.R.China)

Abstract: CO2 capture and sequestration (CCS) is an emission reduction measure with great potential. Porous biochar contains rich multi-scale pore structure,which makes it have excellent CO2 adsorption performance. To address the shortcomings of traditional CO2 adsorption prediction models built with experimental data,such as low accuracy and complicated calculation, this paper adopts machine learning methods such as gradient boosting decision tree(GBDT),extreme gradient enhancement algorithm (XGB)and light gradient booster algorithm (LGBM) to make model predictions of CO2 adsorption by biochar,and conducts comparative analysis of the prediction results. The results showed that the three most important factors affecting CO2 adsorption were the specific surface area,Ccontent,andOcontent of biochar inorder.Allthree algorithms could effctively predict the CO2 adsorption performance of biochar. In comparison, LGBM has the highest prediction accuracy of 94% GBDT has a significant advantage in processing anomalous sample data; and XGB has more stable prediction results for diferent test set variations. When designing the adsorption performance of biochar,excessive surface area should not be blindly pursued.It is recommended that the selection of biochar C content should preferably be between 83% and 88% ,and O content should preferably be between 15% and 18%

Keywords: biochar; machine learning; CO2 adsorption; feature importance;partial dependency map

溫室氣體積累導(dǎo)致全球變暖,已經(jīng)成為國(guó)際社會(huì)研究的熱點(diǎn)問(wèn)題[]。(剩余14416字)

試讀結(jié)束

monitor