特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于強化學習風電并網(wǎng)策略下的韌性分析

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TM614;TM743 文獻標識碼:A

Abstract:To explore the impact of wind power station grid-connection sites on the resilience of power networks,this paper introduces a new analytical framework for assessing the resilience of wind power network. By integrating the network's structural and functional models and applying relevant resilience assessment metrics,we propose a Q-Learning-based grid-connection strategy to identify the optimal grid-connection locations for wind power station. We validate this strategy using the IEEE 118 power grid model,which incorporates wind power grid-connection. Our research shows that the Q-Learning-based grid-connection strategy surpasses traditional heuristic methods and genetic algorithms in reducing operational costs and the risk of overload, highlighting the crucial role of strategic grid-connection in strengthening the network's resilience.

Keywords: complex network;resilience; Q -Learning algorithm;wind power grid connection

0 引言

近年來,隨著全球?qū)η鍧嵞茉吹男枨蟛粩嘣黾?,在電力行業(yè),風力發(fā)電已經(jīng)成為了最具潛力的可再生能源之一,越來越多的國家將風力發(fā)電納入到能源轉(zhuǎn)型和電力供應的戰(zhàn)略規(guī)劃中[1]。(剩余9851字)

monitor