基于主成分分析和神經(jīng)網(wǎng)絡(luò)聚類(lèi)的城市坡道行駛工況研究

打開(kāi)文本圖片集
主題詞:坡道行駛工況主成分分析SOM神經(jīng)網(wǎng)絡(luò) 聚類(lèi)分析性能測(cè)試中圖分類(lèi)號(hào):U469.11 文獻(xiàn)標(biāo)志碼:A DOI:10.19620/j.cnki.1000-3703.2024090
Investigation ofUrban Ramp Driving CycleBasedon Principal Component Analysis and Neural Network Clustering
SongYuzhen',Wu Zhimin’,YinXiaofeng',LeiYulong2,LiangYiming' (1.Stitute ofAutomotive Enginering,Xihua University,Chengdu 61Oo39;2.NationalKey Laboratoryof Automobile Chassis Integration and Bionics,Jilin University, Changchun )
【Abstract】Aiming at the issue of lacking slope information in urban driving cyclesused for vehicle performance evaluation,this paper proposes a methodfor Urban Ramp Driving Cycle (URDC)construction basedonSelf-Organizing Map (SOM)neural network.Typicalroaddrivingdata withurbanrampcharacteristicsiscollectedusing theaverage traficflow method.Afterpre-processing,thedataissegmentedintoshorttrips,and2O parametersrepresentingroadoperation characteristicsareselectedasthefeature parametersof theshorttrips.Thedimensionalityof these feature parameters is then reducedviaprincipalcomponentanalysis,followedbyclusteringtheshorttripsanalysisusinga SOMneural network. Accordingtotheprincipleofsmoothrampconnection,short trips with highcorelationareselecedtoconstructanurbanramp drivingcyclethat includesboth speedand slope information.Theresultsof automatictransmisionoperated in slope performancetestindicatethattheconstructeddrivingcyclecanreflectthedrivingcharacteristicsofvehiclesonroadwithurban ramp features,whichcanbeusedasthebenchmark driving cycleforperformance testof vehicledrivingonurbanramps.
Key words: Ramp driving cycle, Principal component analysis, SOM neural network, Cluster analysis,Performancetest
【引用格式】宋宇臻,吳智敏,陰曉峰,等.基于主成分分析和神經(jīng)網(wǎng)絡(luò)聚類(lèi)的城市坡道行駛工況研究[J].汽車(chē)技術(shù),2025(5):47-54.SONGYZ,WUZM,YINXF,etal.Investigationof UrbanRampDriving Cycle BasedonPrincipal ComponentAnalysisandNeuralNetwork Clustering[J].Automobile Technology,2025(5): 47-54.
1前言
目前,國(guó)內(nèi)外車(chē)用性能測(cè)試基準(zhǔn)的行駛工況多采用速度-時(shí)間曲線表達(dá),由于缺少坡道信息,難以反映車(chē)輛在坡道特征道路上的行駛特性,進(jìn)而影響車(chē)輛坡道行駛性能評(píng)估結(jié)果的準(zhǔn)確性[1-3]。(剩余9319字)