基于高斯混合-隱馬爾可夫模型的駕駛意圖識(shí)別

打開文本圖片集
主題詞:自動(dòng)駕駛 駕駛意圖識(shí)別高斯混合模型隱馬爾可夫模型Frenet坐標(biāo)系中圖分類號(hào):U463.6 文獻(xiàn)標(biāo)志碼:A DOI:10.19620/j.cnki.1000-3703.20231201
Driving Intention Recognition Based on Gaussian Mixture-Hidden MarkovModel
Shen Yu122,Liu Guanghui2,Ma Xuanpeng1,XuJiawen2,Yan Yuan2 (1.School of Information Engineering,Gansu Minzu Normal University,Hezuo 747ooo;2.Schoolof Electronicand Information Engineering,Lanzhou Jiaotong University,Lanzhou )
【Abstract】To achieve accurate recognition of vehicle driving intentions in highway scenarios,this paper proposes a drivingintentionrecognitionmodelthatcombinesdualreferencelinesintheFrenetcoordinatewith GausianMixture Models (GMMs)andHidden Markov Models (HMMs).Themodel selectsdrivingdata fromdiferentreference linesintheFrenet coordinatebasedonvehiclepositionasobservedvariables.By integratingtheobservationprobabilitiesoutputbytheGMMat previousand subsequent time steps withthe HMM,the model identifies the vehicles’driving intentionat thecurrentmoment. Theefectivenessof themodelisvalidatedusingtheUS-101datasetfrom NGSIM.Theresultsshow that thedual-referenceline GMM-HMM model achieves recognition accuracies of 93.33% for lane keeping and 92.24% for lane changing,indicating excellent recognition performance.
Key Words:Autonomous driving,Driving intention recognition,Gaussan Mixture Model (GMM),HiddenMarkovModel (HMM),F(xiàn)renetcoordinate
【引用格式】沈瑜,劉廣輝,馬翱鵬,等.基于高斯混合-隱馬爾可夫模型的駕駛意圖識(shí)別[J].汽車技術(shù),2025(5):22-28SHENY,LIUGH,MAXP,etal.Driving IntentionRecognitionBasedonGausian Mixture-HiddenMarkovModel[J].Automobile Technology,2025(5):22-28.
1前言
道路交通事故原因分析表明,約四分之一的安全事故源于駕駛意圖傳達(dá)不明確[1。(剩余9483字)