基于改進(jìn)CBR算法特征權(quán)重分配的震后應(yīng)急物資需求預(yù)測方法

打開文本圖片集
中圖分類號:TP391 文獻(xiàn)標(biāo)識碼:A 文章編號:2096-4706(2025)07-0133-06
Abstract:Inorder toimprove theaccuracyofpost-earthquake emergencymaterial demandforecasting,this paper proposes afeatureweightllocationmethodbasedonimprovedCase-BasedReasoning(CBR)algorithm,andconstructsapost-earthquake emergencymaterial demand forecasting modelbasedonsafetystock theory.The model isbasedonseven earthquakedisaster indicatorssuchasagntude,focaldepth,artquakeocrecetime,populationdensityumberofousecollaps,eisic fortificationintensityandseismicintensity.Itcanacuratelyforecastthedemandforvarioustypesofemergencymaterialsafter theearthquake.The experimentalresults show thatthe MeanRelative Errorof the forcast valueobtained bythe forecasting model optimized bygame theory-improved geneticalgorithm(SAGA)and Analytic Hierarchy Process (AHP)algorithmare 89 . 5 7 % and 8 7 . 5 1 % lower than that obtained by GA algorithm optimization and SAGA algorithm optimization,respectively. This showsthat the modelcan providestrong technicalsupport for theeffcientallocationofpost-earthquake emergency materials.
Keywords: post-earthquake emergency material; demand forecasting; game theory; SAGA algorithm; Case-Based Reasoning algorithm
0 引言
中國位于歐亞地震帶和環(huán)太平洋地震帶之間,地震災(zāi)害的頻繁發(fā)生嚴(yán)重威脅著國家的社會建設(shè)、經(jīng)濟(jì)發(fā)展和人民生命安全[。(剩余7281字)