基于K-means的動態(tài)聚類垃圾回收算法研究

打開文本圖片集
中圖分類號:TP333;TP301.6 文獻(xiàn)標(biāo)識碼:A 文章編號:2096-4706(2025)07-0093-05
Abstract: Inconsumer electronics products based onNAND flash memory,garbage colection significantlyafects device performance,andcold-hot data separation is the keytooptimizing the garbage colection algorithm.This paper proposes an inovative method that uses the K-means clustering algorithm to automaticall determinethedata heat intervals and achieve eficientcold-hotdataseparation.Additionally,anadaptiveifluence factoradjustmentstrategyisdesignedtodyamically balancetheinfuenceofhistoricaldataheatandrecentdataheatOnthisbasis,thegarbagecolectionstrategyisoptimized.The simulationresults showthatcompared withtheexistingalgorithms,this methodhasasignifcant efectonimproving thereadwriteperformanceand achieving wear leveling,which is helpful in prolonging the service lifeoftheequipment and improving the overall performance.
Keywords: flash memory; garbage collection; cold-hot separation; K-means; clustering
0 引言
隨著移動設(shè)備、嵌入式系統(tǒng)和數(shù)據(jù)中心的普及,NANDFlash閃存在存儲領(lǐng)域的重要性日益凸顯。(剩余7766字)