基于圖神經(jīng)網(wǎng)絡(luò)的林分空間結(jié)構(gòu)優(yōu)化

打開(kāi)文本圖片集
中圖分類(lèi)號(hào):S750 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7525/j.issn.1006-8023.2025.03.002
Abstract:The optimizationof stand spatial structure is akey issue inachieving sustainable forest management.Traditionaloptimizationmethodsoftenexhibitloweficiencyinhandlingcomplexspatialrelationshipsandlarge-scaledata.This study proposed a stand spatial structure optimization method basedon Graph Atention Networks (GAT).An integrated spatial structure evaluation system was established using the entropy-weighted mater-element analysis method,and a graph neural network modelwas constructedbasedonstanddata fromthe Tanglin ForestFarmof the Xinqing Forestry bureauin northern Yichun,Heilongjiang Province.Themodel wasapplied to perform multi-objectiveoptimization analysis of stand spatial structure. Experimental results showed that at a 2 5 % harvesting intensity,the integrated spatial structure index improvedfrom4.336 to 7.256. The GAT model demonstrated superior performance incapturing complex spatial relationships andoptimizing multi-objectivetasks.This study provides aninnovativeandintellgentapproach foroptimizing standspatial structure and managing forests,contributing to the enhancementofforest ecosystem health and stability.
Keywords:Stand spatial structure;graph neural networks;mattr-element analysis;graph atention network;entropy weighting method
0 引言
森林生態(tài)系統(tǒng)是地球上最重要的生態(tài)系統(tǒng)之一,不僅為人類(lèi)提供豐富的資源,還在調(diào)節(jié)氣候、保持水土和防風(fēng)固沙等方面發(fā)揮著重要作用1。(剩余15752字)