)分別為 3 . 2 7 % 1 1 . 1 0 % 、0.918。MAE和MSE比沒有源域訓(xùn)練的檢測(cè)模型分別縮小了 2 . 3 6 % 和 1 . 0 2 % , <img src="/qkimages/slgc/slgc202503/slgc20250301-1-l.jpg" with="19px" style="vertical-align: middle;"> 提升了0.114。對(duì)比遷移前后說明遷移學(xué)習(xí)為降低光譜枯葉含水率建模時(shí)間成本、提高光譜檢測(cè)實(shí)用性提供新的手段。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于近紅外光譜的林內(nèi)枯葉跨林分間模型遷移的含水率檢測(cè)方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):S762.2 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7525/j.issn.1006-8023.2025.03.001

Abstract:Themoisturecontentofforestfloorliterisakeyfactorinforestfireoccurrences,nditsaccuratedetectionis crucial for fire prevention.Near-infrared spectroscopy(NIRS)can directly invert moisturecontent from spectral data, enabling rapid detectionof liter moisture content.However,spectral characteristics difer between fuel types due to variations inlightintensitydataatdiffrent wavelengths,requiringseparatedetectionmodelsforliterfrom dierenttree species to match specific light intensity-moisture content inversion relationships.Collcting and labeling spectral data across differentforeststands is time-consuming,limitingthepracticalapplicationofthespectralmethod.Toaddresthis issue,this study proposesa moisturecontent detection method for forest floor liter basedon Bi-LSTM(Bidirectional Long Short-Term Memory)transferlearning.By transfering the trained modelparameters to new models,we avoid training models from scratch,thereby improving model learning eficiencyand reducing the data required fortraining.The studydemonstrates thatthe Bi-LSTMmethodsurpases the traditional inversion approach using LSTMin termsof detection accuracy.Specifically,the mean absolute errr (MAE)for Quercus mongolicaand Larix gmelinii is reduced by

0 . 6 2 % and 0 . 8 7 % ,respectively,while the mean squared error(MSE)is reduced by 0 . 2 8 % and 0 . 7 0 % ,respectively. Moreover,the Bi-LSTM-based transfer learning approach significantly lessens the reliance on labeled NIR spectraldata. With a target domain sample size of 3OO and a source domain sample size of 1 0 0 0 ,the detection model record an MAE of 3 . 2 7 % ,an MSE of 1. 10 % ,and an of 0.918.When compared to models without source domain training,the MAE and MSE show reductions of 2. 3 6 % and 1 . 0 2 % ,respectively,and an increase in of 0.114.A comparative analysis before andafterimplementingtransferlearningreveals thathismethodologyoffersanovelstrategytodiminishthetimecostasociated withmodeling moisturecontentin spectralitterand to enhancethepracticalapplicationof spectraldetection. Keywords:Liter fall;moisture content;transfer learning;deep learning;near-infrared spectrum

0 引言

林內(nèi)可燃物作為森林火災(zāi)產(chǎn)生的必要條件之二[1],其中森林地表枯葉含水率(dead fuel forest mois-turecontent,DFFMC)作為一級(jí)引火要素是引起森林火災(zāi)的重要因素[2]。(剩余16370字)

monitor