自同構(gòu)系統(tǒng)的拓?fù)鋭傂?/h1>

打開文本圖片集
摘要:研究了可數(shù)離散群在緊度量空間étale等價(jià)關(guān)系上的自同構(gòu)作用。文章引入了自同構(gòu)系統(tǒng)上連續(xù)強(qiáng)軌道等價(jià)的定義,證明了共軛的兩個(gè)自同構(gòu)系統(tǒng)一定是連續(xù)強(qiáng)軌道等價(jià)的,反之,在本質(zhì)自由和離散群是順從無撓的條件下,滿足剛性條件的兩個(gè)連續(xù)強(qiáng)軌道等價(jià)的自同構(gòu)系統(tǒng)是共軛的。
關(guān)鍵詞:自同構(gòu)系統(tǒng);廣群;連續(xù)強(qiáng)軌道等價(jià);共軛
中圖分類號(hào): O189.11 文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1673-2340(2024)03-0089-06
Abstract: This paper studies the automorphism actions of countable discrete groups on the étale equivalence relations on compact metric spaces. First, the notion of continuous strong orbit equivalence for automorphism systems is introduced and it is proved that two conjugate automorphism systems are continuously strong orbit equivalent. Conversely, under the conditions of essentially freeness and discrete groups being amenable and torsion-free, two continuously strong orbit equivalent automorphism systems satisfying the rigid condition are conjugate.
Key words: automorphism system; groupoid; continuous strong orbit equivalence; conjugacy
算子代數(shù)與遍歷理論之間的相互作用始于Murray和von Neumann關(guān)于群von Neumann代數(shù)的構(gòu)造[1]。(剩余10141字)