DRO框架下不平衡分類損失函數(shù)重加權(quán)優(yōu)化

打開文本圖片集
關(guān)鍵詞:不平衡分類;數(shù)據(jù)標(biāo)簽不確定性;加權(quán)標(biāo)簽分布穩(wěn)健損失
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-3695(2025)08-024-2428-09
doi:10.19734/j. issn.1001-3695.2024.10.0480
Optimization of re-weighted loss function for imbalanced classification under DRO framework
Li Jiajing’,Lin Geng2+(1.Schoolofttics&istcs,jnalUiersitzo57in;2holopuer>Uversity,F(xiàn)uzhou ,China)
Abstract:The skewed distributionofclassesoftenleads clasification models toneglecttheimportanceof minorityclasses,favoringthe majorityones,whichcanrender models incapableof accurate classification in multi-classimbalancedtasks.Existingresearch focusesonthe studyof data balancing strategies andloss function tuning,ignoring the problemofuncertaintyin labelinginformation,werelabelsmaybewongornoisyTheuncertaintymakesclasifiercorrectclasificationmorechallenging.Thispaperproposedanewlossfunction,calledweightedlabeldistributionallyrobustKullback-Leibler,whichoptimisedthepredictivedistributionundertheworst-casescenario,toaddressthechangesanduncertaintiesindatadistributionfor theimbalanced clasification task.Basedonadistributionallyrobust framework,thisapproach merged prior informationand label weights tofocus onminorityclasss andadapt to labeluncertainty.Inaddition,this paper proposedasimulation method forimbalanceddatasets thatused MonteCarlosimulations toprovideamorecomprehensiveevaluationof theperformanceof eachlossfunctionunderdiferent classesandatdifferent levelsofquantitativevariance.Experimentalresultsonsimulated, UCI and Kagledatasetsshowthatthe proposed method performs wellwith imbalanced dataandachievesamoderate improvement in top-k accuracy, F1 -scores,precision and recall.
Key words:multi-classimbalanced task;data label uncertainty;weighted labeled distribution robust loss
0 引言
在現(xiàn)實中,數(shù)據(jù)集往往呈現(xiàn)出一種傾斜的不平衡狀態(tài),即某些類別的樣本數(shù)量會遠(yuǎn)遠(yuǎn)多于其他類別。(剩余20929字)