基于脈沖神經(jīng)元膜電位增量的數(shù)據(jù)分布統(tǒng)計量及批歸一化

打開文本圖片集
關(guān)鍵詞:脈沖神經(jīng)網(wǎng)絡(luò);批歸一化;脈沖時間依賴性;脈沖神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法中圖分類號:TP183 文獻標(biāo)志碼:A 文章編號:1001-3695(2025)08-013-2341-07doi:10.19734/j.issn.1001-3695.2024.12.0529
Data distribution statistics and batch normalization based on membrane potential increments of spiking neurons
LiWeiqi1,ChenYunhual?,ChenPinghua1,Zhu Chunjia2 (1.SchoolofComputerSience&Tchologyuangdong UniersityfTchologyuangzhou5o,hina;2.ChinaSibldingR search&DesignCenter,NeijiangSichuan641199,China)
Abstract:SNN has garnered significant atention due to theirlow power consumptionand high-speedcomputation,stemming fromtheiravoidanceof multiplicationoperations.However,substantial challnges remainin theareas of training algorithms, hyperparameter tuning,andarchitecture designforSNN.Adressng the limitations of existing BNmethods inefectively handling temporal dependencies,thispaperanalyzed thepropagationof membrane potential incrementsacrosstimesteps.The proposed method computed the spatio-temporal accumulationof membrane potential increments step-by-stepas statistical measuresfornormalizingdataateachtimestep.Furthermore,itintroducedanexponentiallweighted moving average tocompute thespatio-temporalaccumulationofmembranepotentialincrements,foringaspatio-temporalatenuationcumulativebatch normalization(STBN)method.Experimentalresultsonthe CIFAR-10,CIFAR-10O,and CIFAR10-DVS datasets demonstrate that the proposed method significantly improves network clasificationaccuracyandreduces latency.Notably,onthe CIFAR100 dataset, the method achieves an accuracy of 76.30% using only two time steps, representing a 3.43% improvement over the previous best algorithm for similar models.
Key words:spiking neural network(SNN);batch normalization(BN);temporal dependencies inspiking;training algo rithmsfor spikingneural network
0 引言
由腦科學(xué)啟發(fā)設(shè)計出的脈沖神經(jīng)網(wǎng)絡(luò)(SNN)[1~3]作為第三代人工神經(jīng)網(wǎng)絡(luò),有著更好的生物解釋性。(剩余17494字)