2</sup>Net) 。 SAF<sup>2</sup>Net 首先引入一種混合尺度空間自適應(yīng)特征調(diào)制模塊,采用類似于特征金字塔的方式獲取不同尺度下的判別特征,豐富多尺度特征的表達(dá)能力。隨后,設(shè)計(jì)了一個(gè)全局多尺度感受野選擇塊,挖掘跨尺度區(qū)域間的關(guān)聯(lián)特征。在此基礎(chǔ)上,引入空間自適應(yīng)選擇塊和頻率分離選擇塊,融合空間-頻率互補(bǔ)信息以增強(qiáng)局部特征,提高模型對(duì)圖像高頻內(nèi)容的建模能力。在兩個(gè)公開(kāi)遙感圖像數(shù)據(jù)集上進(jìn)行多組實(shí)驗(yàn), SAF<sup>2</sup>Net 獲得的定量評(píng)價(jià)指標(biāo)結(jié)果均優(yōu)于其他對(duì)比方法。以UCMerced數(shù)據(jù)集3倍超分辨率為例,本文方法相較于次優(yōu)方法HAUNet,PSNR和SSIM分別提升了0.11dB和0.0O33;在主觀視覺(jué)質(zhì)量方面, SAF<sup>2</sup>Net 能夠恢復(fù)出更多清晰的紋理細(xì)節(jié)。實(shí)驗(yàn)結(jié)果表明,本文所提出的 SAF<sup>2</sup>Net 能夠從兩個(gè)不同的角度挖掘混合尺度全局信息,并有效融合空間-頻率互補(bǔ)特征,在遙感圖像超分辨率任務(wù)中表現(xiàn)出具有競(jìng)爭(zhēng)力的重建性能,-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

面向單幅遙感圖像超分辨率的空間自適應(yīng)及 頻率融合網(wǎng)絡(luò)

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

關(guān)鍵詞:遙感圖像;超分辨率;混合尺度特征;空頻互補(bǔ)信息中圖分類號(hào):TP391 文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.37188/OPE.20253308.1238 CSTR:32169.14.OPE.20253308.1238

Abstract: Most of the existing methods of remote sensing image super-resolution are unable to fully explore the self-similarity information at hybrid scales and the correlation between cross-scale regions.Moreover,these methods ignore the ability of the frequency domain to perceive the high-frequency information of the images. To addressthis problem,a Spatial Adaptation and Frequency Fusion Network (SAF2Net)

was proposed. Firstly, SAF2Net introduced a hybrid-scale spatially-adaptive feature modulation,which adopted a feature pyramid-like approach to obtain discriminative features at diferent scales and enriched the expression ability of multi-scale features.Subsequently,a global multi-scale field selection block was designed to extract the correlation features of cross-scale regions. On this basis,a spatial adaptively selection block and a frequency separation selection block were introduced to fuse space-frequency complementary information to enhance local features,improving the model's ability to model the high-frequency content of images.Multiple sets of experiments are conducted on two remote sensing image datasets,which indicates that the quantitative evaluation metrics obtained by SAF2Net outperform those of other comparative methods. Taking the UCMerced dataset with 3 times super-resolution as an example,the proposed method improves PSNR and SSIMby O.11 dB and O.OO3 3,respectively,in compared with the next best method HAUNet. In terms of the subjective visual quality, SAFNet is able to recover more clear texture details.The experimental results demonstrate that the SAF2Net proposed is capable of mining the hybridscale global information from two different perspectives as wellas fusing the space-frequency complementary features efectively,which exhibits competitive performance in the remote sensing image super-resolution task.

Key words: remote sensing image;super resolution;hybrid-scale features; space-frequency complementaryinformation

1引言

隨著遙感應(yīng)用的日益發(fā)展,遙感圖像提供了豐富的空間細(xì)節(jié)和地物特征,在土地覆蓋分割1、分類[2、目標(biāo)精確識(shí)別[3以及變化監(jiān)測(cè)[4等諸多研究領(lǐng)域中,扮演著至關(guān)重要的角色。(剩余24375字)

monitor