基于多分支CNN與改進(jìn)級聯(lián)森林的故障診斷

打開文本圖片集
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A
Abstract:Infaultdiagnosis,deeplearningmodelssuchasConvolutionalNeuralNetworks(CNN)andDepForesthavedemonstrated outstandingperformance,atractingsignificantaention.However,single-branchCNsextractliitedfaultfeatures,ndthemultigrainedscainginDeepForestrequiresredesigningandajustingparametersfordiferentdatasets.Thispaperproposesahbriddep learningmodelthatcombinesamulti-branchCNNwithanimprovedcascadeforest.Firstly,amulti-branchCNwithdiferentcnvolutionalkerelsisigdtoactveeauresiaalllisfopes.codlyincEtG dient Boosting(XGBost)handlesnonlineardatabeterthanrandomforest,onerandomforestinthecascadeforest isreplacedwith XGBoost.Thispartialeplacementleveragestheadvantagesofdiferentalgoris,tiizigtheodel'soverallpeformaneFinally,ahybriddplearning modelcombines themulti-branch CNNandtheimprovedCascadeForest.Experimentsconductedonthree bearingdatasets and one rotor dataset demonstrate the proposed model's strong effctiveness in fault diagnosis.
Keywords:faultdiagnosis;CNN;cascade forest;XGBoost
對軸承和齒輪準(zhǔn)確的故障診斷是保證設(shè)備安全運行的基礎(chǔ),對工業(yè)領(lǐng)域的持續(xù)發(fā)展至關(guān)重要[1-3]
隨著技術(shù)的發(fā)展,利用計算機(jī)和人工智能診斷機(jī)械故障成為一個熱門話題[4]。(剩余13882字)