,并計算標(biāo)準(zhǔn)參數(shù) (n,k) 與真實擬合參數(shù) <img src="/qkimages/353d/353d202504/353d20250410-3-l.jpg" with="41px" style="vertical-align: middle;"> 間的綜合相關(guān)系數(shù),通過搜索 (n,k) 查找表2評定霧濃度等級。通過不同濃度有霧圖像測試,證明算法測試結(jié)果符合濃度變化趨勢:經(jīng)過同場景不同濃度、不同場景不同濃度樣本測試,算法測試結(jié)果與 PM2.5 相關(guān)系數(shù)達0.95,表明算法能夠作為視場霧濃度等級評定;經(jīng)過橫向?qū)Ρ葴y試表明研究算法測試誤差小于 4.8% ,可以用于視場霧濃度檢測。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

回歸擬合NR函數(shù)及GPDR先驗的圖像霧濃度檢測

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP391.9 文獻標(biāo)志碼:A 文章編號:1000-582X(2025)04-115-12

Inspection of image fog Concentration using regression-fitting NR function and GPDR prior

WEN Limin*b, WANG Huifenga, JU Yongfenga (a.School of Electronic & Engineering; b. Experimental Teaching Center of Electronics and Electronics, Chang'an University, Xi'an 710064, P.R.China)

Abstract:Addressing the limitations of fog concentration inspection in image defogging,an algorithm based on the scatterplot prior of the generalized pixel diference-ratio(GPDR)and the Naka-Rushton(NR)fitting function was proposed.First,the GPDR prior for gray scaterplots in standard foggy image sets across various scenes was extracted.Next, the NR function,constrained by the prior, was introduced, and a lookup table of parameters (n,k) corresponding to fog concentration levels was established by calculating the parameters (n,k) of NR function for standard image sets. Regression analysis was then used to calculate the parameters for real foggy images, and the comprehensive correlation coefficient between (n,k) and was calculated. Parameters (n,k) with correlation coeffcients exceeding a set threshold were considered indicative of the fog concentration level. Simulations show that the algorithm accurately reflect changes in fog concentration across images with varying densities.Additionally,correlation coefficients between the algorithm's results and PM2.5 measurements reached up to 0.95,both within the same andacrossdiffrent scenes.This shows thatthealgorithm can be effectively used for fog concentration rating in visual field.Horizontal comparison tests show that the inspection accuracy of the proposed algorithm can reach up to 4.8% , making it suitable for field fog concentration detection. Keywords: fog concentration; LIVE library; GPDR; Naka-Rushton function; inspection

霧是生活中常見的自然現(xiàn)象,其存在會影響人們的生產(chǎn)和生活,通常這種影響是負(fù)面的,需要減緩或消除。(剩余12581字)

試讀結(jié)束

monitor