基于CNN-BiLSTM-Attention模型的胡麻產(chǎn)量預(yù)測(cè)

打開文本圖片集
中圖分類號(hào):S565.9 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 1000-4440(2025)07-1342-(
Flax yield prediction based on CNN-BiLSTM-Attention model
LI Xingyu',LI Yue 1,2 , GAO Yuhong2,3(1.Colfdlsi;ebHabtats,Uesi;fes
Abstract:This study proposed a deep learning-based model integrating Convolutional Neural Network (CNN),BidirectionalLongShort-TermMemory(BiLSTM)andatentionmechanismtopredictflaxyield.Themodelcombinedthe spatialfeature extractioncapabilityofCNN,the temporal dynamicmodelingabilityof BiLSTM,and the featureadaptive weighting functionof the Atentionmechanism.The model was trained using climatedata,vegetation indices,andyielddata during 2000-2020.Experimentalresultsshowed that theCNN-BiLSTM-Attntionmodel significantlyoutperformedtraditional models in prediction accuracy,with a root mean square error ( RMSE )of 316.98kg/hm2 and a coefficient of determination ( R2 )of 0.83.The model maintained good stabilityand high accuracy under interannual climate change conditions.This studyprovides technical supportforflaxyieldprediction,and itsmodulardesign frameworkcanalsobeextended tohe growth monitoring and yield prediction of other crops.
Key words:flax;yield prediction;deep learning;Convolutional Neural Network;Bidirectional Long Short-Term Memory model
胡麻(油用亞麻)是亞麻科(Liancease)亞麻屬(Linum)的重要油料作物[1],其籽粒富含不飽和脂肪酸(亞麻酸、亞油酸、油酸)、木酚素和亞麻膠等活性物質(zhì),具有降血脂、降血壓、降血糖以及預(yù)防心腦血管疾病等功能[2]。(剩余11298字)