2</sup> ,決定系數(shù) (R<sup>2</sup>) 達(dá)到 0.83 。該模型在年際氣候變化條件下保持了良好的穩(wěn)定性和較高的精確度。本研究為胡麻產(chǎn)量預(yù)測(cè)提供了技術(shù)支持,其模塊化設(shè)計(jì)框架還可推廣應(yīng)用于其他作物的生長(zhǎng)監(jiān)測(cè)與產(chǎn)量預(yù)估。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于CNN-BiLSTM-Attention模型的胡麻產(chǎn)量預(yù)測(cè)

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):S565.9 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 1000-4440(2025)07-1342-(

Flax yield prediction based on CNN-BiLSTM-Attention model

LI Xingyu',LI Yue 1,2 , GAO Yuhong2,3(1.Colfdlsi;ebHabtats,Uesi;fes

Abstract:This study proposed a deep learning-based model integrating Convolutional Neural Network (CNN),BidirectionalLongShort-TermMemory(BiLSTM)andatentionmechanismtopredictflaxyield.Themodelcombinedthe spatialfeature extractioncapabilityofCNN,the temporal dynamicmodelingabilityof BiLSTM,and the featureadaptive weighting functionof the Atentionmechanism.The model was trained using climatedata,vegetation indices,andyielddata during 2000-2020.Experimentalresultsshowed that theCNN-BiLSTM-Attntionmodel significantlyoutperformedtraditional models in prediction accuracy,with a root mean square error ( RMSE )of 316.98kg/hm2 and a coefficient of determination ( R2 )of 0.83.The model maintained good stabilityand high accuracy under interannual climate change conditions.This studyprovides technical supportforflaxyieldprediction,and itsmodulardesign frameworkcanalsobeextended tohe growth monitoring and yield prediction of other crops.

Key words:flax;yield prediction;deep learning;Convolutional Neural Network;Bidirectional Long Short-Term Memory model

胡麻(油用亞麻)是亞麻科(Liancease)亞麻屬(Linum)的重要油料作物[1],其籽粒富含不飽和脂肪酸(亞麻酸、亞油酸、油酸)、木酚素和亞麻膠等活性物質(zhì),具有降血脂、降血壓、降血糖以及預(yù)防心腦血管疾病等功能[2]。(剩余11298字)

monitor